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that may in any way be related thereto.

The Office of Public Affairs has reviewed this report, and it is releasable to the
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including foreign nationals.

This report has heen reviewed and is approved for publication.

\ Z; L ,.,'// ’ ',‘,'.'-/7 /,/"
(/!L / - K‘//' - /L' - ‘L—Q/..‘r,. N r)l( J/ _ //

LARRY . LOCPER WILLIAM E. ALLLEY, Techmcal le&CtOd
Project Scientist Manpnwer and Personnel Research Division

T —“'~; //(J y&/r//pg

ROGER W ALFORD, Lt Cal/USAF
Chief, Manpower and Personnel Research Division




REPORT DOCUMENTATION PAGE o N el o168

Public reporting burden for this coilection of Infc lon is esti d to ge 1 hour per reeponse, including the time for reviewing instructions, searching existing data sources, gatherin
and maintaining the Jata needec, and compieting and reviewing the colliection of information. Send comments regarding thie burden estimate or any other aspect of tivs ciilection of
Information, insluding su gocuon: for reducing this burden, to Washington H uarters Services, Directorate for information Operations and ?3%15. 1215 Jefterson Davis Highway, Suite
1204, Ariington, VA -4302, and to the e of Management and Budget, Paperwork Reduction Project {(0704-0188), Washington, DC 5

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT YYPE AND DATES COVERED
November 1991 Final Report — September 1989 — May 1991
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Neural Networks and Their Application to Air Force Personnei Modeling C - F41689-88-D-0251
PE - 62205F
PR - 7719
l 6. AUTHOR(S) TW/tJ - :38
] Vince L. Wiggins -

Larry T. Looper
Sheree K. Engquist

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

RRC, Incorporated
3833 Texas Avenue, Suite 256
Bryan, TX 77802

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Armstrong Laboratory REPORT NUMBER
Human Resources Directorate AL-TR-1991-0031

Manpower and Personnel Research Division
Brooks Air Force Base, TX 78235-5000

11. SUPPLEMENTARY NOTES

Armstrong Laboratory Technical Monitor: Larry T. Looper, (512) 536-3648

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13.ABSTRACT (Maximum 200 words)

Neurai network technology has recently demonstrated capabilities in areas important to personnel research
such as statistical analysis, decision modeling, control, and forecasting. The preseni investigation indicates
that three different neural network architectures are particularly suited to modeling many aspects of the Air Force
personnel system: back propagation, learning vector guantization, and probabilistic neural networks. The
primary advantage of neutral networks is their ability to derive nonlinear and interacting relationships among
model variables. Two areas investigated in order to evaluate this capability were airmen reenlistment decisions
and airman inventory modeling.

14.SUBJECT TERMS 15.NUMBER OF PAGES
decision modeling 64
neural networks

personnel system modsling

16. PRICE CODE

17. SECURITY CLASSIFICATION ]18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE _ OF AtﬁTRIACT, i UL
Unclassified nclassified nclassified
NEN T840-01-280-3500 Standard Form 208 (Rev 2-89)

Prescribed by ANSI Std £38-18
208-102




< Wi

« TR

,;:;..i-i- . ;.i‘ E.'Tn‘ =

AL

ie

s

-';‘ji?v’rﬂﬁ o

CONTENTS

INTRODUCTION TO NEURALNETWORKS . . . . . . .. . . o o e

Artificial NeuUrons . . . . . . e e e e e e e e e e
Neural Network Architectures , . . . . . . . . . o o e e e e e e e s e e e
Back Propagation . . . . . ... e e

Training With Back Propagation . . .. . ... ... .. . e
Capabilities of Back Propagation . . . . . . . . . . i i e e
Back Propagation Prob.ams and Solutions . . . . . ... . o oo

Learning Vector Quantizalion . . . . . . . . . . o 0 vt e e e

Competitive Learning in LVQ . . . . .. . . . . .
Related Architectures and Improvements . . . . . . . . . . . . o e

Probabilistic Neural Network . . . . . . . . . . 0 o e e e e e e e e e

AIRFORCE PERSONNEL MODELING . . . . . . . . .. . oo

Types of Personnel Models . . . . . . . . . L e
Accession/Enlistment Models . . . . . ... L L e

Agyregi @ ACCESSIONS . . . . . . L L e e e e e
Applying Neural Networks to Aggregate Accessions . .. . .............
Individual Enlistment . . . . .. . L
Applying Neural Networks to Incividual Enlistment . . .. .. .. ..........

Reenlistment/Separation . . . . . . . . . . o e e e e e e

Some Specific Models . . . . . . . . . L e
Reenlistment ASSeSSMeNt . . . . . . . . .. . e e e
Neural Network Systems and Reenlistment Models . . . . . ... ... .......

Prior SeIviCe . . . . . e e e e e e
Inventory Planning Models (IPMs) . . . . . .. . . . . Lo

Cohort-Based Inventory Models . . . . .. ... .. ... ... ... ...
Other Inventory Models . . . . .. . . . .. ... .
Neural Networks and IPMs . . . . . . . ... .. .. . .. .. o 0 ..




CONTENTS (Continued)

Page

Other Personnel-Related Models . . . . . . . . . . .. . .. . .. 34
Armed Forces Health Professions Scholarship Program (AFHPSP) .. ... .. .. 34
Neural Networks and the AFHPSP . . . . .. .. .. .. ... .. .. .. ..... 34
Recruiter ASSIGNMENtS. . . . . . . . . e e e e e e e e 34
IMPLEMENTING NEURAL NETWORK PERSONNELMODELS . . .. .. ... ... ... ... 35
Reenlistment Model . . . . . . . . . e e e e 35
Model Structure . . . . . . . . . e e e e e 36
Modeling Techniques . . . . . . . . . . . . e e 36

Data Requirements . . . . . . . . . . . . e e e e 37
Validation and Testing . . . . . . . . . . .. . 37
Evaluation and Interpretation of Models . . . . ... . .. ... .. .. ... ..., 38
Inventory Model . . . . . L e 40
Initial Network Model . . . . . . . . .. ... . e 41
Validation . . . . .. e e e e e 43
CONCLUSIONS . . . e e e e 43
REFERENCES . . . . . . e e s 44




List of Figures

Fig
No. Page
1 An artificial neuron with some reenlistment determinants as direct inputs . . . . .. 4
2 A simple back propagation network to predict reenlistment/

separation decisions of enlisted airmen . . . . .. .. ... ... oo 5
3 Schematic and computations for LVQ . .. ... .. ... . . oo 14
4 A hypothetical distribution of airmen at a reenlistment/separation decision point

and the decision regions formed by applying the LVQ architecture of

Figure 3 to this distribution . . . . . . . . . . . . 15
5 Application of the Bayesian minimum loss decision ruie using

hypothetical distributions of airmen at a reenlistment decision point . . ... .. .. 18
6 Effect of changing the smoothing parameter o on the form of an estimated PDF . 18
7 A conceptual view of the airmen and information flows in the

enlisted personnel system . . . . . . .. L. e e e e 22

List of Tables

Table
No.
1 INDEPENDENT VARIABLES USED IN FIRST TERM REENLISTMENT/

RETENTION MODELS . . .. . . . . e e 27
2 SIMULTANEOUS ACCESSION/RETENTION EQUATION SYSTEM .. .. .. ..... 41

A st L. ., /

T v

Tralfe o v aedl

IRV ST LS S ST




B T L

PR i

]

<y gt o o W BT i

e e

4t

i o AR
L SR §

L D e o Yoty

PREFACE

This is the first task in a two-stage effort to assess the potential for applying neural
network techniques to the Air Force personnel field. The current work provides a conceptual
overview of the technology and recommendations for specific application areas. The second
task will directly assess the empirical capabilities of neural networks as compared to those
of more traditional methods. These efforts are a component of the Armstrong Laboratory
Force Management Program. The resulting models will serve as analysis and decision tools
in the Air Force and OASD force management and palicy analysis systems.

The authors wish to particularly thank Ms. Kathryn Turner for substantial revisions to
Section I of this document. Ms. Amy Wortman provided many suggesticns to improve the
readability of the document, and Mrs. Kathy Berry assisted in the final formatiing. Dr. Brice
Stone and Dr. Thomas R. Saving provided many technical insights during discussions of the
material.
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NEURAL NETWORKS AND THEIR APP'ICATION TO
AIR FORCE PERSONNEL MODCLING

SUMMARY

This report evaluates the potential for applying neural networks to Air Farce personnel
analysis and pinpoints those areas of personnel analysis most suitable for examination with
neural network techniques.  Neural network technology has recently demonstrated capabilities
in areas important to personnel research such as statistical analysis, decision modeling, control,
and forecasting. An extensive review of the neural network literature indicates that these
networks have proven superior to more iraditional analytic techniques in many applications.
This review also indicates that three different neural network architectures are particularly suited
to modeling many aspects of the Air Force personnel sysiem. As demonstrated in the literature,
the principal benefit offered by these architectures is the ability to derive nonlinear and interacting
relationships among the components of a model. The three networks described in the report
(back propagation, learning vector quantization, and probabilistic neural network) are all shown
to be capable of representing much richer relationships than those obtained by standard
parametric  modeis.

Combined with an examination of current Air Force personnel models, the review of neural
network Iliterature indicates several personnel modeling areas which could benefit from the
added flexibility of the neural network architectures. In particular, two areas were selected to
empirically evaluate the application of neural networks in personnel research: airman reenlistment
decisions and airman inventory modeling. Conceptual models based on prior research in these
areas were developed and the method of applying neural networks to these models is outlined
in the report.

INTRODUCTION

This is the final report of a task to evaluate the potential of applying neural network
technology to Air Force Personnel modeling. The nature of this task requires that this report
address several rather disparate areas. The report serves as both an introduction to neural
networks and a research plan for applying neural networks to the personnel system. Incorporated
info this framework is a description of three important network architectures, along with a brief
review of armed forces personnel models.

Recent non-military research in neural networks strongly suggests this new technology will
have implications in several areas related to personnel planning and management.  Neural
networks have been compared against traditional techniques in several areas such as curve
fiting and system control and found to surpass the capabilities of those techniques in many
cases. Despite this extensive ongoing research in neural networks, no efforts are currently
fecused on manpower and personnel iSsues. One of the major goals of this task is to identify
those areas in the Air Force personnel system which are most amenable 10 the application of
neural network techniques and to suggest areas where neural networks can be effectively
compared with more traditional methods. A secondary goal involves the introduction and
explanation of neural network techriiques to researchers and analysts in the Air Force personnel
field.

Dunnyg this research tive major objectives were accomplished:
1. Survey and review of neural network techniques, methodology, and applications.

2. Review of Air Force personnel modeling.
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3. Conceptual development of personnel system models using neural networks.

4. ldentification and description of existing models or traditional methods against which
neural networks can be compared.

5. Development of a primer on neural networks.

The field of neural networks is highly interdisciplinary and marked by great diversity in its
models, techniques, and research goals. Some of the most successful techniques are described
in Section I, along with a brief introduction to tne general concepts of neural networks. Some
current personnel models are reviewed in Section lll, and particular attention is paid to areas
where neural networks may prove useful. These models range in complexity from simpie linear
reenlistment functions to multifaceted simulations of the entire personnel inventory. Drawing
on the information in the previous sections, several specific Air Force personnel models
appropriate for examination with neural networks are outlined in Section V. Plans for
implementing the models using neural networks are discussed, and data requirements are
outlined.  Methods of evaluating and validating the resulting models have been previously
documented in Stone, Looper, and McGarrity (1990). Several specific applications of neural
networks are surveyed in a separate literature review (Wiggins, 1990a). The survey focuses
on applications that are related to, and provide background for, potential applications in the
personnel arena. In addition, Wiggins, Looper, and Engquist (1990) provide an introductory
tutorial on neural networks.

INTRODUCTION TO NEURAL NETWORKS

Neural networks have a history dating from the turn of the century. However, their
application, outside of physiological and some psychological research, was limited until the
1940s and did not begin in earnest unil the 1980s. The driving force behind much of the
neural network research has been the capability of the brain and nervous system to perform
complex pattern recognition, controi, and cognitive tasks.! Emulation of the highly distributed
and interconnected nature of the brain may produce automata with some of the capabilities
of biological neural networks. The networks of concern here are implemented as software or
hardware simulations which are loosely based on our knowledge of the characteristics of
biological reurons. These networks are often refarred to as antificial neural networks or ANNs
to distingush them from their bpiological counterparts.  Although neural networks have beer
applied in areas ranging from associative memory to optimization and control, the focus in the
present report will be on the general areas of classification, prediction, and control.

Three features or characteristics differentiate neural networks (both biological and artificial)
from most other methods. First, neural networks are composed of simple processing elements.
Second, many processing elements are employed to perform any task.  Third, all of the
elements process and communicate information at the same time. Taken together, the iast
two features define a distributed parallel computing system. This type of system is being
explored in several areas such as parallel supercomputers. It is the use of a vast number
of simple processing elements, an extremely high degree of parallelism, and automated learning
methods which distinguishes neural networks from these other distributed paraliel systems.

“TFor a detailed survey of the historical development of ariificial neursl networks and early neurological research, see the
collection of papers annotated by Arderson and Rosenfeld (1988).
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Within these boundaries, there are many neural network architectures (or types of neural
networks). Of primary interest are those architectures which allow the network to capture
information from potentially noisy inputs and then, given new inputs which may represent novel
situations, generalize their response using the information previously captured. A few of the
specific areas where this capability has been exploited include: hand-written character recognition,
stock price forecasting, classification of sonar signals, and control of robotic Gevices.

Artificial Neurons

e processing elements or neurons® which form a neural network are usually modeled as
simple noniinear functions. They accept a set of N inputs, compute the products of the inputs
with a set of N weights, and pass the result through a nonlinear function referred to as a
“transfer function.” Figure 1 depicts a neuron that operates in this fashion. In this case, the
neuron is operating on inputs which could be taken to represent impontant factors in an airmen's
reenlistment decision. Each of the inputs (length of service, dependents, etc.) is multiplied by
its associated weight, and a sum § is produced. This sum is then passed through a nonlinear
transfer function. Three possible nonlinearities are shown: hard-limiting, sigmoidal, and
threshold. The inputs could be different for another problem; or, in many cases, would be
the outputs of other neurons instead of direct connections to the “outside worid.,” Some neural
network architectures postulate more complex neural functions: using spike trains rather than
real numbers, accounting for temporal features, or employing more compiicated aggregation
functions than a simple weighted sum. However, the majority of current networks employ the
“sum and fire” type of neuron shown in Figure 1. Most network architectures are differentiated
by how the neurons are connected (network topology) and the rules for training or adapting
the network to incoming signals or inputs.

Neural Network Architectures

There are over twenty major types of neural network architectures currently in use. Many
of these major types also have several variations on their basic scheme. Specific architectures
are usually most wuseful in particular problem domains: early vision, cognitive functions,
associative memory, classification, function approximation, etc. A ftew have more general
capabilities and applications. The first two architectures discussed below have proven to be
some of the more useful in several different domains. They represent some of the most
mature techniques in this very young field. In addition, their methods of capturing and
representing information lie at opposite ends of the neural network learning spectrum. The
third architecture, Probabilistic Neural Network (PNN), is particularly suited to classification
problems and is based on established Bayesian classification techniques. These three
architectures and their variants are prime candidates for application to personnel issues.

Back Propagation

One of ihe most widely applied neural networks is the Dback propagation3 architecture
discovered independently by Werbos (1974) and Rumelhart, Hinton, and Williams (1984). This

IThe ;_ir—nple procassing elements that form a neural netv:ork sro referred 1o using several different terms: processing elements
{PEs)., neurons, or computational elements.

JA testimony to the relalive youth of the neural network field and the variety of disciplines contributing to the fiold is the
equivocation in the use of torms and even spollings. The most studied and applied architectwre in the field will be found as
back propagation, backpropagation, or back-propragation, deponding on the author. Back propagation will be used in this
report except in direct quoles and bibliographic references where the author's spelling wifl be refained
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architecture allows a network to learn complex nonlinear relations between its inputs and
outputs by forming an internal representation in layers of neurons with nonlinear transfer
functions.  The term “back propagation” sometimes refers only to the method of learning
described below; it is also often applied to the complete architecture of layered neurons
operating in a feed-forward topology and trained by back propagation of errors. As can be
seen in  Wiggins (1990a), back propagation networks have demonstrated several
capabilities—particularly in classification, control, and functional approximation problems. Given
the prominent position of back propagation networks, they will be used to demonstrate many
neural network concepts.  Specific problems and potential solutions associated with these
networks will also be treated in somewhat greater detail.

A Typical Artificial Neuron

g

o

f ~»-a = Activation

igmoid Activation

e

| = Inputs

00

Threshold activation

Figure 1. An artificial neuron with some reenlistment determinants as direct
inputs.  The neuron computes a weighted sum of the inputs and
passes the result through a nonlinear transfer function. The forms
of three alternate transfer functions are shown.

Back propagation is an error-correcting learning technique that seeks to minimize the
prediction error of a neural network. This error is usually defined as the sum of squared
errors (SSE) over all training exemplars.4 Other back propagation formulations are possible,
such as maximizing likelihood or minimizing the absolute value of the errors (see Lippman,

4 A wraining exemplar is a single obsarvation of Inputs and outputs to which a network is to be trained. It is directly analogous

1o observations or casas in regression analysis. Another term frequentely used for exempolars is “training patterns.” Although
these terms are all interchangeable with respect to network operation, each usually has its own meaning in a parlicular problom
domaln,




1987). Minimizing the SSE is also the goal of most regression techniques; but, in the case
of neural networks, the flexibility of the network allows more generai models to be captured.
Back propagation networks generally take on the form of the layered network shown in Figure
2. To facilitate the discussion, an example from the personnel system has been chosen for
demonstration. An extremely simple airman reenlistment classification problem, using only two
determinants (length of service nd number of dependents), is shown. In addition, the size
of the network is kept very small so the problem can be addressed without resort to vector
notation.

Back Propagation

Length ot
Service
(LOS)

ral
R = Reenlistment

Dependents
{DEP)

A
Error: E =R -R

Sum: S = Wik + WA Adj Error: Ew = ER(1-R)

A
Activation: R = P Weight Update: AW, = L E Ay,

' Learning Rate: 0 < L << 1

Figure 2. A simple back propagation network to predict reenlistment/separation
decisions of enlisted airmen. The feed-forward equations are shown
on the left, and the equations for weight adaptation are shown on
the right.

The two neurons labeled N1 and N2 form a “hidden” iayer which receives its signals (length
of service and dependents) from the input layer. The neurons in the hidden layer pass their
outputs (ANt and An2) to the output neuron. The output layer in this case is composed of
a single neuron N3. This output neuron computes its output based on these outputs from Nt
and N2 and the connecting weights Ws and We. This flow of information from input to output
is referred to as the “feed-forward process,” and this type of network is called a “feed-forward
architecture.”  Alternatively, networks that contain feedback connections from the hidden layers
or outputs to prior layers are called “recurrent networks." It should be pointed out that the
architecture of the network in Figure 2 is paricularly simple. Typically there are more than
two inputs, and often more hidden layers of neurons are employed. Each hidden layer's
neurons are usually completely connected to the neurons in the previous layer (closer to the
input). In addition, the output need not be limited to a single neuron. In the current example,
if one wished to model the extension decision along with the reenlistment decision, two additional
neurons (one for separation and one for extension) could be added to the output layer.
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Tiaining With Back Propagation

Training in neural networks is normally an adaptive process, with the netwcrk adjusting
itself each time it receives a new exemplar. An illustration of this learning using Figure 2 will
provide some insight into the process. For the example, one should assume training exemplars
{obeervations) are available on individual airmen at a reenlistment decision point. Also, the
observations include the airman’s length of service, number of dependents, and reeniistment
outcome (G if the airman separates, 1 if he reenlists). An airman’s length cf service and
nurnber of dependents are provided as inputs to the network. [he neurons N1 and W2 process
the inputs by multiplying each input by its respective weight (W1 and W3 for N1, and W2 and
W4 for N2). The resulting sums are passed through a sigmoid activation function to produce
the output for each neuron in the hidden layer. These neurons are operating in exactly the
same manner shown in Figure 1 when the sigmoid transfer furnction is used. These outputs
are then fed into the output neuron N3, wiich performs the same summing and transformation
function. These functions are shown for N3 in the Sum and Activation equations in Figure
2. After this feed-forward process, the output of N3 is interpreted as the classification prediction
for the airman. The output is a real value in the range uf 0 to 1. If the output is above
.5, the network is predicting a reenlistment; if it is below .5, the network is predicting a
separation.

During the training stage, the network is also provided wih the actual decision of the
airman.  Given this actual decision and the predicted decision ~f the network, the back
propagation training algorithm attempts to adjust the network so tha. its response is closer to
the airman's observed decision. Toward this end, N3 computes its output error E as shown
in Figure 2. This error is adjusted by the derivative of the activation function, and the adjusted
error is used to adapt each of the neuron's weights by a small amount, determined by the
learning rate. This adjustment causes the neuron’s output to be closer to the observed decision
of the airman. Thus far only the weights on the output neuron have been adjusted. Because
the neurons in the hidden layer do not have a target output, it is not initially clear how to
adjust their weights. This is known as the credit assignment problem., Back propagation
employs the chain rule of integral calculus to assign some of the blame for the final output
error to the hidden neuronis. As seen in the figure, N1 is assigned an error ENj proportional
to its contribution to the final output. This error can then be used by N1 to adjust its weights
using precisely the same process used by the output neuron. Likewise, N2 follows the same
process. The learning rate L determines how much adjustment is made by the neurons, and
thus, how quickly they adapt to each new exemplar.

If the learning rate is small enough, the algorithm outlined above implements a first-order
gradient descent search in weight space for the set of weights that will minimize the sum of
squared errors over the outputs for all exemplars in the data set. In other words, the algorithm
seeks that set of weights which produces the closest fit to the observed decisions using least
squared error as the fit criterion. The training process can be slow and, in the case of difficult
problems, can require several thousand passes through the compiete set of exemplars before
the waeights stabilize and the network converges.

More formally, the SSE criterion can be expressed as:

E =

N —

IT (e - 06))° (1)
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Where:

te| is the target or desired output of output neuron j for the exemplar
e.

Oaj is the output of neuron j (neuron j in the output layer) for exemplar
e.

E is the total error across all output neurons and all training exemplars.

Gradient descent requires that each weight change be proportional to the impact of the
weight change on total error E; thus;

L L
AW/I v ¢ ()WU (2)
Where:

wii is the weight from neuron i to neuron j.

Because the output of a neuron for a given exemplar is merely:

Where: 1
Ooj = —————r (3)
7 Zwj0ei
1+e’
Oei is the output of neuron i in the layer feeding into the layer

containing neuron j (this may be a hidden layer or in some cases
a direct input), differentiating Equation 1 with respect to 0e} and
Equation 3 with respect to wji, then combining the result with the
chain rule produces

9E - Ity - 00)06j(1-0¢))Oei. (4)
awij €

1his is precisely the value required for application of gradient descent as shown in Equation
2. This derivative requires the observed target value for each exemplar tej and is applicable
only to neurons in the output layer. The first component in the summation is simply the
prediction error of the output neuron, whereas the second component is the derivative of the
siginoid — “tivation  function. it can be seen that the weight adaplation rule shown in Figure
2 perfonns preciseiy the update required in Equation 4 (with the learning rate as the constant
of proportionality).  Obtaining the derivative for neurons in the hidden layer requires another
application of the chain rule and produces an expression which requires the back propagation

of errors shown by the large arrow in Figure 2.

The derivation above assumes the network is presented with all of the exemplars before
the net-ork's weights are updated. This process is known as “batch learning.” Adapting the
weights after each exemplar, as shown i Figure 2, is referred to as “on-line learning.” The
learning rate would have to be infinitely small for on-line updating to follow the actual gradient
from all the exemplars. Conversely, on-line learning is continually estimating a local gradient
bised on the current exemplar. Rumelhart et al. (1984) present an informal derivation of back
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propagation using on-line learning and also show & detailed derivation for the adaptation of
hidden neurons. Both forms of learning are uced in practice, an” neither has proven consistently
preferable in all cases.

The finai result of this derivation is an algorithm (shown in Figure 2) for performing gradient
descent in a layered network using only local information. It solves the credit assignment
problem for neurons in the hidden layers, which allows the learning of nonlinear functions.
Creative application of the chain rule, and the use of simple gradient descent, allows each
neuron t6 adapt its weights using only information from the neurons to which it is directly
connected. By freeing the network from the need for global information, the back propagation
algorithm allows the network to oe implemented in rarallel using a very fine grain size-by
neuron.

Capabilities of Back Propagation

The example above used back propagation to classify airmen according to their expected
reenlistment/separation intentions. In practical applications, the continuous output of the final
neuron is usually interpreted to represent the confidence of the ciassification or the probability
that the positive result will occur (airman reenlists). In these types of classification tasks, a
feed-forward network with two hidden layers can produce an arbitrarily complex decision region
to classify the inputs. The region can contain non-convex partitions, and individual classes
can form discontinuous partitions.5

If the sigmoid transfer function on the output neuron is changed to a linear function, the
network can produce real valued results spanning the real number system (Lapedes & Farber,
1987). This architecture allows the network to mcdel any system that requires a mapping of
inputs to outputs. In fact, several researchers have shown that a feed-forward network with
at least one hidden layer, and monotonically increasing nonlinear transfer functions, can produce
any continuous mapping of inputs to outputs (Funahashi, 1989; Hecht-Nielsen, 1987¢; Hornik,
Stinchcomebe, & White, 1989). This is probably one of the most important theoretical results
in the field. It demonstrates that feed-forward neural networks can be used as universal
function approximators.  Any continuous functional form can be captured and reproduced by
the interconnections in such a network.

This result holds panicular promise for problem domains where the inputs to a system (or
decision) are known, but it is impossible to theoretically determine the form of the relationship
between the inputs and outputs. The personnel system is rife with such examples. Haw
does the unemplovment rate affect an airman’'s decision to reenlist? Does gender affect the
impact military compensation has on a potential recruit's likelihood to enlis.? In fact it is
almost impossible to find a case where the functional relationship (linear, log-unear, exponential,
etc) is known. It is even more difficult to specify whether the determinants’ effects are
interrelated (e.g., an airman may be sensitive to civilian wages only when the unemployment
rate is sufficiently fow). The ability of a feed-forward neural network to produce any required
reiationship that fits the observed behavior of a system could be very important in these areas.
The form of the model itself becomes data-driven rather than simply representing the parameters
of 2 predefined functional system.




Back Propagation Problems and Solutions

Local Minima. In the form described above, back propagation has several theoretical and
operational problems. Mclnerney, Haines, Biafore, and Hecht-Nielsen (1989) have demonstrated
that back propagation networks can exhibit local minima in their error surfaces. This has
significant implications for the convergence of the algorithm. A feed-forward network can be
a universal approximator; however, under conditions with local minima, the back propagation
training algorithm is not guaranteed to find the best approximation for a given network structure.

Avoiding Local Minima. There are no solutions to the problem of local minima while
remaining strictly within the framework of gradient descent search used by back propagation.
Any gradient-following system, whether first- or second-order, is subject 1o becoming trapped
in local minima (if such minima exist). Rumelhart and McClelland (1986) claim that local
minima are unlikely to occur in networks with many nidden units. The added degrees of
freedom in such networks, by increasing the dimension of the search space, actually increase
the likelihood that the search will be over a convex surface.

Baba (1989) has suggested the use of a random optimization method (Matyas, 1965) to
avoid the problem of local minima. Baba's recommendation is to generate a set of Gaussian
random errors and add those to the weights in the network. If the fit of the network improves,
keep the change; otherwise, return the network to its original state. This is a straightforward
random search technique and guarantees the convergence of the network to its global minimum
error (Solis & Wets, 1981). In his empirical tests, Baba found that the algorithm performed
fasier and found the global minimum more reliably than did back propagation on two of three
example problems. However, and particularly on one example problem, the speed and ultimate
convergence of Baba's method were highly dependent on the choice of the variance of the
Gaussian errors.  Patrikar and Provence (1990) suggested a very similar technique which
involves adding a random perturbation to a single weight and accepting the change if the
network's performance improves.

Whitley and Starkweather (1990) have suggested the use of genetic algorithms to search
for the weights in a feed-forward network. These algorithms operate by maintaining a population
of solutions to the problem (weights in this case) and allowing these solutions to selectively
exchange information based on which solutions are most “fit" for the problem (see Goldberg,
1989; Holland, 1975). Aithough they do not guarantee the global minimum, genetic algorithms
are expressly designed to search error surfaces with many local minima and find “good” or
near-optimal solutions, Early empirical results from Whitley and Starkweather are encouraging.
it should be noted that neither of these solutions solves the problem that back propagation
encounters when local minima are present. Rather, completely different search techniques are
substituted for back propagation. Still, both techniques lend themselves to distributed hardware
implementations and the vast increase in speed such architectures offer.

Slow Convergence. Related to the local minima problem is the very slow convergence
and consequent long training times of the back propagation algorithm. It is not uncommon
for back propagation to require 20,000 to 30,000 passes through 2 data set before the weights
converge. This slow convergence often results from long, gently sloping regions in the error
surface. These regions aiso make it difficult to determine when the algorithm has converged.
Weights may remain very stable and little reduction is SSE may be observed over long training
sequences as the algorithm passes over such a surface.

Speeding Convergence. Given the desirable properties of the algorithm, the problem of
slow convergence has received extensive attention in the literature. It should be noted,
however, thet speed is a problem only when fraining back propagation networks. Once a
network has been trained, com;.uting the resu, prediction, or classificaiion for a new set of
inputs is straightforward and rapid. Most of these speed ups take one of three forms:
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1. Standard optimization techniques.
2. Heuristics for adapting network training parameters.
3. Order and selection of training exemplars.

The most pervasive suggestions for increasing convergence rates using the back propagation
algorithm involve the use of optimization techniques. Back propagation employs one of the
simplest of optimization techniques-first-order gradient descent. Most efficient optimization
techniques utilize some second-order information about the gradient, and these are the most
common suggestions for speeding up back propagation. Several researchers have suggested
more traditional curve-fitting techniques which use second-order information: recursive least
squares (Kollias & Anastassiou, 1988; Paimieri & Shaw, 1990) or Kalman filtering (Scalero &
Tepedelenlioglu, 1990; Singhal & Wu, 1989). Though these techniques are often efficient, they
require complete information on the entire weight matrix to update each weight.6 This
requirement makes the techniques much more difficutt to implement in paraliel hardware
(especially the fine-grain parallelism associated with neural networks). Less restrictive techniques
have been suggested that estimate second-order effects using only local information. Kramer
and Sangiovanni-Vicentelly (1989) and Cho and Kim (1990) have suggested various forms of
conjugate gradient algorithms. The work of Fahlmann (1988), Becker and le Cun (1988), and
Dewan and Sontag (1990) can be best described as quasi-Newtonian methods. Line search
algorithms have also been proposed (Dahl, 1987). These are only a handful of the hundred
or so hybrid second-order techniques that have been explored. The empirical results from
each of these techniques typically demonstrate significant speed improvements over standard
back propagation. Five- to 50-fold increases in convergence speed are not uncommon using
these methods on selected problems.

A second common method for accelerating the back propagation algorithm involves adapting
the learning parameters. Most important among these parameters is the learning rate L shown
in Figure 2. The convergence rate and stability of the network can depend dramaticaily on
the value of this learning rate. The rate is usually set at a fixed value, or follows a simple
declining schedule as learning progresses. When the rate is allowed to adapt to the local
slope of the error surface, significant performance increases have been found. Several
researchers have suggested heuristics for adapting a global network learning rate (Battiti, 1990;
Cater, 1987; Chen & Mars, 1990; Vogl, Mangis, Rigler, Zink, & Alcon, 1988). in general,
these heuristics take the form of rules which increase the learning rate wnen it appears the
network is in a flat region of the error surface. Jacobs (1988) extended this line of research
and developed heuristics for adapting a separate learning rate for each individual neuron. This
method was subsequently refined by Minai and Williams (1990).

The third method often used to accelerate training involves selecting and ordering the
training sampie. Lippman (1987) careiully chose equal numbers of exemplars from each class
in a classification problein. He also ordered the sample such that the classes alternated on
each presentation of an exemplar. Hoskins (1989) suggests “focused-attention backpropagation,”
which selects for presentation exemplars that are difficult to learn. Essentially, the network
ignores those exemplars which it can correctly classify and trains only on those it is currently
misclassifying.  Several variations on presentation order have been examined by Ohnishi,
Okamoto, and Sugie (1990). Speed improvemenis over standard back propagation on sample
problems ranged from none to threefold increases.

5A complete bordered Hessian matrix of weights must ba inverted for each step toward the final solution
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Other methods to accelerate hack propagation have been tried. Stornetta and Huberman
(1987) adjusted the sigmoid transfer function to be symmetric about zero. Along these same
lines, Rezgui and Tepedelenlioglu (1990) used a limited-range linear activation function.
Unlearning (or weight decay) during training was suggested by Hagiwara (1990). Baba (1990)
combined his random optimization method with gradient descent to speed convergence. Samad
(1990) viewed the back propagation algorithm as a series of rules and suggested severai
logical variations on those rules.

Each of these techniques has demonstrated speed improvements over standard back
propagation on some example problems. The speed increase sometimes reaches a factor of
50. However, there are usually problems for which the same methods demonstrate little or
no improvement in speed; and some of the methods occasionally exhibit pathological behavior
(wild oscillations or inablitiy to converge). Widrow (1990) has pointed out that, though sometimes
slow, gradient descent is an extremely robust technique when applied to convex optimization.
These speed enhancement techniques may prove important if large quantities of data from the
personnel_ system are to be routinely analyzed using only software simulations of neural
networks.” ~For the current research, the question of whether to use these techniques (and
which techniques to use) is less pressing than assessing the applicability of back propagation
itself.

Poor Generalization. Another area of difficulty involves generalization, or the ability of the
network to perform well on exemplars not in its training set. This is a problem only if the
underlying model is stochastic or there is noise in the data set. Many of the current applications
involve engineering-type problems where there is little noise in the inputs and the model does
not contain a large stochastic element. In this case, a model that fits the known data generally
performs well on new examples within the range of the training data. Personnel problems,
on the other hand, usually involve a substantial stochastic element. On problems with similar
“noisy” elements, Rumelhart and McClelland, (1986) have found cases of back propagation
fitting the training data well, but performing poorly on new exemplars. Preliminary analysis of
individuat airman reenlistment decisions and pilot Undergraduate Pilot Training (UPT) success
has demonstrated distinct generalization problems (Wiggins, 1990b). Because of their flexibility,
feed-forward networks can be prone to overtraining in these cases. Essentially, the network
can "memorize” a data set, including the noise in the observations. The inclusion of this
noise in the network's internal model degrades its ability to perform outside the training sample.
The problem is related to overfitting in other estimation techniques.

Improving  Generalization. This remains one of the least-ad ressed aspects of back
propagation learmning.  Most early proposals to address the problem involved using small
networks with a minimal number of neurons in hidden layers (again see Rumelhart & McClelland,
1986). A network with few neurons has less flexibility and therefore can learn only the main
statistical features in the data set. Because the main features are exhibited by most of the
cxemplars and the noise or siochasiic factors vary across exemplars, the smaller network is
forced to ignore small differences in exemplars and is more likely to learn the characteristics
of the "true” model. It is very common to try several networks with differing numbers of
hidden layers and neurons in those hidden layers. Though less arduous, this behavior bears
a strong resemblance to performing a specification search when doing regression analysis.

"Currontly most research is done with sofiware neural network simulators. Reasonably priced hardware will soon be available
to implerment some network architectures directly. These will run at 1,000 to 1,000,000 fimes the speed of software simulation
and ronder tho 5- to 50-fold spead improvements of these techiques less valuable for most problems.




In the same vein but removirig the selection of network size from the researcher, Kruschke
(1988) suggests several metrics for dynamically disabling specific nodes and weights during
training. His methods attempt either to excise reduindant neurons or to compress the
dimensionality of the hidden layer. A more complicated method has been recommended by
Mozer and Smolenski (1989). They specify a relevance metric which computes the impact of
removing a neuron or weight on the error function for the network. Neurons or weights with
little impact are removed during training. Other researchers have made similar suggestions
(Bailey, 1990; Sietsma & Dow, 1988). All of these methods start with large, highly flexible
networks and dynamically prune away redundant or unimportant neurons or weights. In all
cases, the size of the resulting network will stil depend to some extent on the setting of
parameters that determine how thorough the pruning will be. Ash (1989) has developed an
algorithm that proceeds in the opposite direction. He starts with the smallest network and
adds nodes until the problem is sufficiently solved. To recognize a sufficiently solved condition
requires the use of a holdout or test sample which is not inciuded during training.

A very different method has been proposed by Lincoln and Skrzypek (1990). They tested
the use of multiple small back propagation networks operating simultaneously on the same
problem. On an abstract test problem, the multiple network model performed inuch better on
unseen exemplars than did a single large network. Along different lines, Movellan (1990)
examined the behavior of differing activation functions when three different noise distributions
were added to equations representing missile ballistics. He found Tukey's distribution (Movellan,
1990) performed best and was much more resistent to noise than was the standard sigmoid
activation function. He aiso found that exponential weight decay performed very similary to
Tukey’'s activation function.

Rumelhart (1990) has recommended several methods for improving generalization. The
most theoretically based among these invoives the addition of a weight penalty term to the
error function (Equation 1), This method effectively enforces continuous decay of the weights
in the network and is operationally similar to the exponential weight decay algorithm used by
Movellan. Only those weights that consistently contribute to solving the problem will keep
their values significantly different from zero. Several researchers have tested different
specifications of the error function (Chauvin, 1990; Hanson & Pratt, 1989) and found that
out-of-sample performance can be improved by this modification. Rumelhart’'s second suggestion
involves maintaining a holdout sample. Training proceeds on the rest of the samples, and
tests are performed at regular intervals against the holdout sample. When performance on
the holdout sample degrades, training is stopped. Though simple, this method has proven
empirically successful. Kimoto, Asakawa, Yoda, and Takewka (1990) employed the technique
to predict stock market trends.

Along the same lines, Morgan and Bouriard (1990) examined the ability of networks of
various sizes to generalize after varying amounts of training. They trained an array of networks
ranging in size from 4 to 200 hidden units on two problems: a contrived classification problem
with known noise characteristics, and a phoneme classification task using actual data. As
training progressed from 1,000 to 10,000 training iterations, the performance of each network
was tested on a holdout sample. The results indicated that both network size and amount
of training had a significant influence on the ability of a network to generalize. They found
that the out-of-sample performance of ali the networks, regardless of size, degraded if training
continued too long. Conversely, in-sample performance continued to improve with training.
Smaller networks exhibited slower degradation and maintained a higher pertormance level even
after extensive “overtraining.” Still, over certain training ranges, the largest networks performed
almost as well as the best-trained small networks. Morgan and Bourlard concluded that network
size and amount of training should be determined empirically for each problem by maintaining
a holdout or test sample for comparison purposes.
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Early research indicates ihat the ability to generalize and techniques for obtaining good
generalization will be critical in Air Force personnel applications. Unfortunately, this is an area
with virtually no theoretical results and meager empirical support. The dynamics, and thus
the training path, of back propagation learning are still not well understood, Despite these
reservations, preliminary empirical work on using the techniques outlined above has produced
encouraging results,

Learning Vector Quantization

Learning Vector Quantization (LVQ) is representative of a ciass of neural networks whose
theory and implementation are quite different from those of back propagation networks. Where
back propagation forms a global distributed representation of the inputs using all of its weights,
LVQ forms local representations of the inputs in specific neurons. Kohonen (1989) developed
the LVQ architecture to solve classification problems where cases or exemplars are to be
selected into categories. Each exemplar is associated with the reference vector neuron whose
weights are closest to its own inputs. The exemplar is then assumed to behave in the same
manner as this reference vector neuron. This process is very similar to the nearest neighbor
algorithm, which compares each new case to be classified with all known cases in the training
data set. The new case is then assumed to fall in the same class as the closest case from
the training data set (see Duda & Hart, 1973). LVQ can also be viewed as an extension of
K-means clustering methods (Hartigan, 1975). K-means clustering has a goal that is similar
to that of a version of LVQ: Find a set of reference means which partitions the input space
such that intra-partition variance is minimized and inter-partition variance is maximized.

Competitive Learning in LVQ

The neurons in an LVQ network are adapted such that their weights become reference
vectors which attract specific exemplars. The process can be described by referring to Figure
3. Again, a simple reenlistment decision example will be used. In this case, the airman’'s
reenlistment military compensation (RMC) and the prevailing unemployment rate (UNEMP) are
assumed to be the inputs or determinants for the classification. A very simple two-input model
is used to facilitate a visual interpretation of the results. The architecture can handle an
arbitrary number of inputs, and this extension is straightforward. This problem also has only
two classes: reenlist and separate. This architecture is particularly well suited to problems
with a large number of classes. As can be seen in the figure, the reference vector neurons
are divided into two groups: those which classify reenlisters (the top group), and those which
classify separators (the bottom group). The weights connecting these neurons to the inputs
form the neuron’s reference vector for the inputs. For example, the weights on the first neuron,
WiRr and Wiu, are reference values, or attractors, for RMC and UNEMP, respectively. When
an exemplar (an individual airman) is presented to the network, each neuron computes its
distance from the exemplar. Euclidean distance, as shown in the calculation of the output for
the sixth neuron (Owne), is the most commonly used distance metric. The neurons then compete
to claim the new exemplar, with the closest neuron winning the competition.

As Kchonen (1984) points out, it is possible to normalize the input vector to unit length.
vince normalized, the distance calculation becomes a simple inner product computation with
the weights. This makes the neuron’'s behavior just like that in Figure 1, with direct output
of the sum (a transfer function is not needed). This pre-processing stage is left oul of Figure
3 to simplify the discussion. The competition process itself can be implemented in parallel
as a neural netwoik, or a simple serial selection of the minimum can be performed (see
Grossberg, 1973).
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Figure 3. Schematic and computations for LVQ. Each reference neuron
computes its distance from the exemplar, with the closest neuron
adapting its weights toward or away from the exemplar as shown.

During training, the winning neuron adapts its weights toward or away from the input values
of the captured exemplar. As with back propagation, the training is supervised and depends
on the observed outcome (reenlistment/separation decision for the airman). If the winning
neuron is a reenlistment neuron (from the top three in the figure) and the airman was observed
to reenlist, then a correct classification has been made. in this case, the neuron adjusts its
weights to be closer to the captured exemplar. As seen in the right of Figure 3, the adjustment
is a simple linear proportion of the difference between the exemplar's inputs and the neuron’s
current weights. A small learning rate, which declines as training progresses, determines how
far the weights are adjusted toward the exemplar's input values. If the neuron had misclassified
the exemplar {(a reenlister captured by a separate neuron, or a separator captured by a reenlist
neuron), the neuron would agjust its weights away from the captured exemplar. In this method,
the neurons move toward the centroids of regions where their classifications are correct and
away from regions where their classifications are incorrect.

The effects of this training can be seen visually in Figure 4. A hypothetical distribution
of airmen is shown. [Each airman is marked by an § or an R representing separator and
reenlister, respectively. In the top half of the figure, decision makers are shown distributed
according to their military compensation and the unemployment rate at the time of their decision.
The bottom half of the figure shows the final position of the reference vector neurons from
Figure 3 after training. (The shaded area is the decision region for reenlisters.) As can be
seen, the neurons form linear discrimination lines with their neighboring neurons. |If there were
four or more inputs, the discrimination surfaces would be hyper-planes, in this manner,
piecewise linear decision reginns are formed for each class. Because only six heurons were
used in this example, the decision regions are very coarse. They can, however, be very
flexible and even discontinuous if required by the particular problem.
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Figure 4. A hypothetical distribution of airmen at a reenlistment/
separation decision point and the decision regions
formed by applying the LVQ architecture of Figure
3 to this distribution.

Bart Kosko (1990) has used stochastic calculus to prove that a broad class of competitive
learning algorithms converge exponentially quickly to the centroids of the inputs. LVQ is one
of many algorithms which are subsumed by Kosko's derivation. The proof is similar to the
application of Kolmogorov's theorem to feed-forward networks in that the centroids are defined
to be only locally optimal. Even so, it guarantees stochastic convergence of the LVQ algorithm.

Related Architectures und Improvements

Related Architectuwes. LVQ is merely one example of a whole family of competitive learning
neural network archiectures. Unsupervised versions of the LVQ have been utilized to cluster
exemplars without regard to known classifications (Kohonen, 1982b). Kohonen (1982a, 1984,
1989) has also developed an unsupervised version of the algorithm in which the neurons are
arranged in a two-dimensional lattice.  Neighboring neurons are adapted together, and the
network forms topological feature maps similar to those for the cortical surface of mammalian
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brains,  This architecture has been particularly useful for developing internal representations
of high-dimensional inputs.

Improvements. Kohonen (1990) has introduced severai adjustments to improve convergence,
class separation, and stability of the algorithm.  Other researchers have also made similar
suggestions (Darken & Moody, 1990; DeSieno, 1988; Kangas, Kohonen, Leaksones, Simula, &
Venta, 1989). LVQ is also similar in spirit to the relatively new neural network architectures
using receptive fields (see Moody & Darken, 1988). Rumelhan & McClelland (1986) examined
competitive learning using somewhat different procedures and in various contexts.  Though
more biologically motivated, Grossberg (1973, 1986) has contributed many neurologically plausible,
competitive  architectures.

Hybrid Networks, Unsupervised versions of LV have been used in combination with other
types of neural networks to produce several hybrid architectures,  Hecht-Nielsen's counter-
propagation network is the best known of these hybrids. The network is capable of producing
arbitrary vector-to-vector mappings like the multilayer back propagation network. Hecnt-Nielsen
(1987a, 1987b) combined an unsupervised LVQ network with a Grossberg (1969, 1982) outstar
network. In this context, the outstar operates in much the same manner as a simple, linear
back propagation network. The network first uses the unsupervised LVQ to cluster the inputs
inta  neighboriioods of related inputs. The outstar then learns a linear mapping from these
neighborhoods for the desired output space. The nonlinearities of a problem are captured in
the neighborhood clustering rather than the outstar weights. The counterpropagaticn network
trains faster than the back propagation network but, in its normal configuration, is slightly less
accurate for most problems. By contrast, de Bollivier, Galliari, and Thiria (1990) stack the
networks in the reverse direction. They place a partially trained back propagation network in
front of an LVQ network. The outputs from the hidden layer of the back propagation rietwork
are used as inputs for the LVQ network. These researchers developed a gradient descent
algorithm for training the stacked network and show that it performs better on a wider range
of problems than does either LVQ or back propagation alone. Their network also trains
considerably faster than a back propagation network.

Probabilistic Neural Network

Overview

The Probabilistic Neural Network (PNN) was developed by Donald Specht (1988, 1990)
specifically to solve classification problems. PNNs utilize classical Bayesian decision rules and
local estimators for probability density functions (PDF) which are implemented within the context
of a neural network. The algorithm shares some conceptual features with LVQ in that it
estimates the multidimensional density function for a class using local information from the
training sample. Instead of employing reference vectors to estimate the PDF, a PNN actually
stores the inputs of each exemplar in a neuron. The multidimensional spatial location of these
exénnplars can ihen be used o construct a PDF for each category in a classification problem.
Once the PDFs have been constructed, an observation whose category is not known can be
classified by selecting the category with the highest point deisity at the location of the unknown
observation's inputs.  Specht has shown that the decision boundaries formed by the PNN
asymptotically approach the Bayes optimal boundaries (i.e., those boundaries that minimize
rnisclassification - expected  risk).
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Training and Classification With a PNN

The Bayes decision rule employed in the PNN minimizes expected risk or cost associated
with the classification. Using a two-class problems and continuing with a reenlistment/separation
example, the decision rule can be specified as:®

reenlist if:  hdi(X) > hslsfs(X) (5)

separate if: hr/rfr()() < hs/sf,s(X)

Where:
he is the a priori probability of reeniisting.'®
he is the a priori probability of separating.
le is the cost or loss associated with classifying as a reenlister an

airman who separates.

la is the cost or loss associated with classifying as & separator an
airman who reenlists.

f:(X) is the multidimensional PDF for reenlisters.
fs(X) is the multidimensional PDF for separators.

X is a vector of inputs representing the dimension of the PDF and
with which the exemplar is to be classified (number of dependents,
RMC, gender, etc.).

This rule classifies an exemplar into the class with the smallest expected risk or loss. The
classification is based on known PDFs for each class, losses associated with misclassification,
overall proportions in each class, and the vector of inputs for the individual exemplar. In most
cases, the loss values or functions (Ir and lg) are assumed to be equal, and they can be
dropped from the equation. In terms of reenlistment/separation, dropping the loss functions
requires the assumption that all misclassifications are equally costly.

The decision rule can be seen graphically in Figure 5. For exposition purposes, the PDFs
are assumed to be univariate, with the only input being the civilian unemployment rate at the
time of the reenlistment decision. The two PDFs shown have already been "scaled” by the
a priori probability of 2 decision maker being in each class (hir and hg). in this manner, the
area under both pseudo PDFs sums to 1.0 When the decision rule from Equation 5 is
applied, the decision boundary is seen to be at the intersection of the two scaled distributions.

8Extension to the multi-class case is straightforward.

8 The notation in this example is consistent with the back propagation and LVQ examples. It diffeis somewhat from that used
in Specht (1950).

10 Oparationally this probability is usually taken 1o be the proportion of reenlisters in the training sample. This proportion is simply
the expected valuo of the probability of reenlisling based solely on the data in the training sample.
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New or unknown airmen who face a decision when the unemployment rate is lower than that
at the intersection would be classified as separators; those to the right of the intersection
would be classified as reenlisters. If the density functions are correct for each class, any
other decision rule would be nonoptimal and fail to minimize the number of misclassifications.
The Bayes rule minimizes misclassification when the loss functions are equal, or “loss” when
different losses are assumed or imposed on different types of misclassification. For example,
misclassifying an eventual reenlister as a separator may be more “costly” than misclassifying
an eventual separator as a reenlister.

Classify as a Classify as a
S y Reeﬁlster

PDF
Reeniisters

0.0 2.0 4.0 8.0 8.0 10.0 12.0 14.0 18.0
Unemployment Rate

Figure 5. Application of the Bayesian minimum loss decision rule using
hypothetical distributions of airmen at a reenlistment decision point.
The boundary for classificaticn of new or unknown decision makers
is drawn a the intersection of the density functions for the two
classes.

The decision rule outlined above can be easily applied if the PDFs for each category
(reenlist and separate) are known. Estimation of these PDFs is analogous to training in the
other networks and forms the core of the PNN. In PNNs, a PDF is estimated as the sum
of many small multivariate Gaussian pseudo-distributions, each centered at a training example.
Operationally, each training example in a class (say reenlisters) is stored, and the local density
of the PDF is computed by measuring the distance from a new exemplar to all exemplars in
the training set. The local density at any point on the PDF may be estimated as:

BX) = 1 T 3 exp |- (X-XAe) (X-XRe) (6)

@yPeP m 2




W T

S U U

St v

NN

Where;

p is the dimensionality of the input space (i.e., the number of inputs:
RMC, unemployment, etc.).

a is a smoothing parameter, which determines the size or extent of
the Gaussian around each training exemplar.

N is the number of training exemplars or observations.

X is a vector of inputs for the point at which the density is to be
measured (or the vector for a new exemplar to be classified).

Xgre is an input vector for the reenlister training exemplar e.
t is a matrix transpose operator.

This computation forms the local density as a sum of smali Gaussian pseudo-distributions
around each known exemplar in the class (reenlisters in this case). Despite the use of
Gaussians, the resulting PDF can assume any form dictated by the distribution of reenlisters
along the input vector X. This distribution and the smoothing parameter o dictate the final
form of the PDF. The smoothing parameter determines the variance of the Gaussians or the
effective range of each training exemplar. Specht (1890) has shown that as ¢ approaches
infinity, the overall PDF approaches a multivariate Gaussian distribution. When o approaches
zero, any new exemplar is classified with its closest training exemplar. At this point, the PNN
operates as a nearest neighbor classifier., The smoothing parameter effectively defines the
size of the neighborhood around an unknown point, which will be used to determine the class
of that point.

Figure 6 demonstrates the impact of changing the smoothing parameter while using the
same five observations as a training sample. In this univariate example, five equally spaced
observations are used to construct four different PDFs. Given the consistent training sample,
the shape of the PDFs is determined solely by the value of the smoothing parameter ¢. With
a very smal o (the top PDF), the individual Gaussian kernels around each observation are
apparent. As ¢ is increased, the impact of each observation becomes less localized and the
total PDF becomes smoother. The value of o is usually determined by empirically analyzing
its effect on the performance of the PNN. Specht (1990) notes that classification performance
of the PNN is fairly insensitive to changes in o and fairly wide ranges of the parameter
produce similar results.

The matrix multiplication in the numerator of the exponential function (Equation 6) actually
serves to compute the squared distance of the new observation's input vector (X) from a given
training exemplar (Xpe). As was the case for the LVQ network, this process can be reduced
to a simple inner product between the new input vector and that of a training exemplar. Again,
this is accomplished by normalizing all training and testing exemplars’ input vectors to unit
length. Once this is done, the estimation of the PDF can be easily performed in a feed-forward
network where each neuron stores a training exemplar (see Specht, 1990).
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PDF when:
c= 0.1

Figure 6. Effect of changing the smcothing parameter ¢ on
tne form of an estimated PDF. All four PDFs are
derived from the same five sample observations.

Other Architectures

Many other neural network architectures have been developed. The three described above
are some of the most generally applicable and well-studied architectures. In addition, they
represent a broad spectrum of neural network concepts: local representation, global
representation, self-organizing structures, and error-correcting learning. These three architectures
and their variants have the potential to be applied to many personnel problems. Lippman
(1987) has written an excellent review articie that discusses several networks and their relation
to pattern classification. Other majcr reviews have been prepared by Kohonen (1988), Grossberg
(1988), and Carpenter (1989). Recently, two introductory neural network books have become
available. Wasserman (1989} provides an introduction to nine major neural network architectures
in his book Neural computing, theory and practice.  Simpson (1990) addresses over 25
architectures, using a consistent notation, ir his book Artificial neural systems: Foundations,
paradigms, applications, and implementations. He assesses the capabilities of each architecture,
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describes applications attempted with each architecture, and provides copious references. The
report on a neural network study performed by the Defense Advanced Research Projects
Agency contains an overview of the technology as of February 1988 (Darpa, 1988). Many
early applications are discussed in that study. Finally, Anderson and Rosenfeld (1988) have
compiled a collection of 45 seminal articles published in the field between 1890 and 1987.1"1
Despite the recent vintage of most of these reviews and introductions, the extremely rapid
advance of information in the field already makes them somewhat dated with respect to the
most successful variants of the architectures, theoretical analyses, and empirical results.  Still,
each provides an overview of concepts and methods upon which most of the current adaptations
and resuits are based.

AIR FORCE PERSONNEL MODELING

The personnel system in the US. Air Force comprises a large number of interacting
components whose primary goal is to maintain mission readiness. Personnel managers and
planners in each area (e.g., accessions, promotions, assignmcnts) seek to optimize the levels
and location of qualified personne! according to manning reguirements for each system. At
the same time, individual airmen niake decisions within the system (e.g., separation, extension)
based on their own preferences and well-being. Al of these decisions are being made in a
complex environment where actions in one area, such as Selective Reenlistment Bonus (SRB)
policy, can impact decisions in another area, such as promotion. Figure 7 shows a highly
schematic view of the airmen and information flows in the enlisted personnel system. The
saolid arrows represent personnel flows from one enlisied inventory cohort to another, whereas
the shaded arrows represent information fiow and information feedback.'® At least one flow
in the system is primarily driven by Air Force policy and management decisions: promotion.
The other flows represent varying combinations of individual airman decision making and explicit
control by personnel managers. Reassignment is primarily driven by management decisions,
with varying amounts of airman input (depending on the programs in place at the time).
Separation, reenlistment, and extension are currently determined wholly by individual airmen
decisions.  Still, these decisions are made in the context of current Air Force policies (SRB,
military compensation, etc.), the composition of the force (availability of career job reservations,
etc.), and economic conditions in the civilian labor force. Accession and retraining are driven
by a combination of individual and personnel management decisions.

The explicit and implicit flows of information in the system are more complex than the
physical flow of pe'sonnel. The education level, demographic factors, and aptitudes of those
in the force (as well as those who are in the accession recruiting pools) form a context which
constrains the implemeniation of policies and the attainment of manning goals. In turn, the
effects of these very policies shape current and future characteristics of the personnel inventory.
Congressional budget constraints must be balanced with manning requirements and the current
and future force composition to produce policies that attempt to meet the manning requirements.13
Al education, demographic, aptitude, economic, and policy conditions are eventually reflected
in the personnel inventory and in the environment in which individual and management decisions
are made.

Tfﬁmo ;—s_ogond collection of articies forthcoming from the MIT Press.

'“(One could as easily define education, aptitudes, and demographic characteristics as forming dimansions of a cohort (in addition
to grade, YOS, etc.), but thay are treated in this view as information about the cohort.

13 Inis view of the systom completoly ignores the equally intoresting task of translating general dafense requirements and specific
sysiem readiness into manning requirements, a task with its own constraints and information (sorne shaied with the system
currenlly being discussed)
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Figure 7. A conceptual view of the airmen and information flows in the
enlisted personnal system. Solid arrows show the flows of airmen
out-of and into a specific personnel cohort. Shaded arrows show
the flow of information in the system and its feedback through
implicit connections to all potential source and destination cohorts
in the personnel system.

The job of modeling this system or its components involves abstracting the relevant features,
dependencies, and interdependencies of the system or a subsystem from the complexity of
the whole organization. The large number of factors affecting the personnel system, as well
as the variety of individual decisions, management decisions, and policy decisions, make the
personnel system extremely difficult to approach with any single modeling, simulation, or
estimation technique. As with most complex systems, the personnel system is usually broken
into smaller components for detailed analysis or aggregated to larger groups for analysis of
the system as a whole. Decisions concerning which features to retain, which to ignore, and
which to simplify determine the information content ot a model. Explicit definition of both the
retained feawures and the form of their relationships defines the conceptual structure of a
model.  This conceptual structure places boumds on the types of problems and levels of detail
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for which the model is useful. Sometimes a conceptual model combined with theoretical
derivations of its behavior is sufficient {0 address, at feast partially, a particular problem. More
often, specific quantified relationships between the components of the model must be found.
In some cases, this quantified relationship is sufficient; in others, however, the dynamic behavior
of groups or individuals operating under the specified relationships must also be quantified. It
is in these last two areas, where it is important for models to capture relationships found in
historical patterns, that neural networks are expected to be the most useful

Types of Personnel Models

The typas of models employed in Air Force personnel research encompass a broad spectrum
of goals and techniques. In general, these modeis can be classified into three broad categories:
analytic or descriptive models, planning modeils, and programming models. Analytic models
are used to describe or analyze a particular functional area. They serve to increase understanding
of an arsa by establishing relationships and constraints within the area. In establishing these
relationships, analytic models seek t0 describe a particular functional area and quantify various
aspects of the area. They typically focus on a specific individual decision (e.qg., reenlist/separate),
a narticular inventory flow (e.g., accession), or a particular policy (e.g., Selective Reenlistment
Bonus).  Statistical and policy-capturing methods are usually employed in these models to
determine factors affecting the decision, flow, or outcome. Analytic models are some of the
most prevalent models in personnel research, and they have been applied to most parts of
the personnel system. The process of extracting and quantifying salient features from a system
increases understanding of the system and is a prerequisite to developing the two other types
of models (planning and programming).

Planning models usually simulate the entire force, or some portion of the force, over time
to assess the impact of policy or economic changes. Programming models are typically
employed to determine the specific aliocation of personnel resources, Often the major difference
between a programming model and a planning model is the temporal horizon. Most planning
models extend at least to the end of the current Program Objective Memorandum (POM) cycle,
and some analyze impacts as far as 30 years out. Conversely, programming models usually
restrict their horizon to the remainder of the current fiscal year. In addition, programming
models usually handle the force, or a portion of the force, at a much more detailed level than
a planning model addressing the same areas. The distinction between the analytic models
and the planning and programming models is also somewhat hazy. Most planning and
programining models explicitly or implicitly include information from one or several analytic
models.  Currently, neural networks will be most useful in developing analytic models. In
these areas, their ability to abstract complex relations from observed behaviors or actions can
be best exploited. The resulting analytic models may then serve as the basis for richer
planning and programming models.

Accession/Enlistment Models

Aggregate Accessions

The importance of recruiting and enlistment to all of the armed forces is displayed by the
number of models developed to explain and predict behavior in this domain. Ash, Udis, and
McNown (1983) analyzed aggregale accessions in each of the four branches of the service.
They estimated 15 race-specific equations among the four services and aggregated Department
of Defense {DOD) accessions using two-stage least squares based on data from 1967 to 197¢.
After extensive testing, Ash et al tound tha* the models tended to perform rather poorly outside
the estimation sample. DeV. w, Saving, and Shughart (1978) also estimated a series of
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aggregate Air Force enlistment rate models. These researchers included many additional factors
not considered by Ash et al. and estimated models using both ordinary least squares (OLS)
and grouped logit techniques. Their accession/retention model was later extended by DeVany
and Saving (1982) to include endogenous recruit quality (measured by the Armed Forces
Qualification Test) and waiting time effects (time spent in the Delayed Enlistment Program).
Siegel and Borack (1981) examined an econometric model of aggregate naval enlistments, and
Borack (1984) addressed the integration of supply models. In addition, documents and repons
on several other models appear in Cirie, Miller, and Sinaiko (1981).

Applying Neural Networks to Aggregate Accessions

The Ash et al research presents a model that is directly addressable by the back propagation
network architecture. The independent variables employed by these researchers would serve
as the inputs to the model. The known enlistment rates from 1967 to 1976 would serve as
the training targets. In place of least squares estimation, a feed-forward network would be
trained using back propagation. It is very likely that the “universal approximation” capability
of back propagation networks would be important in this application. There is no theoretical
or common sansé reason the independent variables shouid have a strictly linear and independent
jimpact on aggregate enlistment rates.

Given the relatively small data set, it is also very likely that some of the techniques to
improve back propagation's out-of-sample performance would be required. Without these
techniques, the flexible network architecture would tend to overfit the training data, to the
detriment of the model's generalization performance. This method of applying neural networks
directly in place of standard criterion-based estimators will hold for most of the personnel
models to be discussed. The continuous nature of both the inputs (independent variables)
and the output (dependent variable) of the Ash et al. model makes back propagation a natural
network choice. However, variants of the PNN and LVQ techniques exist which can address
this continuous vector-to-value mapping, and these techniques should not be dismissed out-of-
hand.

Like the Ash et al. model, the DeVany et al. enlistment models could be directly “estimated”
using the more flexible neural network methods. With regard to the simultaneity of some
inputs, at least three possible approaches could be taken. The first-stage estimates of the
endogenous variables could be obtained using OLS, as they are in two-stage least squares.
These estimates have “removed” the endogenous effects and could be used directly as inputs
to a neural network. Alternately, the first-stage estimates could themselves be formed from a
neural network. The most likely solution would be to includa all exogenous variables as inputs,
including those used as instruments. The endogenous, “right-hand-side” variabies would become
the target outputs for the network. This process would effectively “estimate” a reduced form
model.

Individual Enlistment

The enlistment behavior of high school seniors and recent graduates was analyzed by
Hosek and Petersen (1986) using individual information from the 1979 DOD Survey of Personnel
Entering Military Service and the 1979 National Longitudinal Survey of Labor Force Behavior
(NLS). Hosek and Petersen estimated the DOD-wide probability of reenlistment using logit
analysis based on survey responses. In u related study, Orvis, Gahart, and Hosek (1989)
compared similiar individual-based models to a regional cluster-based model. In general, the
researchers found that the cluster-based models added little information to the models estimated
on individual data.
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Disaggregate DOD-wide enlistment has been considered by other researchers (Borack, 1984,
Curtis, Borack, & Wax, 1987; Orvis & Gahart, 1985, 1989). Some of the Navy's experience
with aggregate and disaggregate accession models is summarized in Cirie, Miller, and Sinaiko
(1981), with further research documented in Cowin, O'Connor, Sage, and Johnson (1980). In
addition, Verdugo and Berliant (1989) examined prime recruiting markets for the Army.

Applying Neural Networks to Individual Enlistment

The individual enlistment problem described above is a typical example of a classification
problem.  Each potential enlistee is to be classified as either a likely enlister or a likely
non-enlister based on a set of individual characteristics, current status, and expectations. It
is also desirable to obtain some confidence level for this classification and/or the ability fo
predict aggregate behavior among cohoris of similar individuals. As described in Section I,
many neural network architectures are very well suited to developing this type of attribute to
class mapping directly from information in the data sets. Again, the application of networks
to this problem is very straightforward. Once a network architecture is chosen, the independent
and dependent (enlist/not enlist) variables are supplied to the network which trains itself to
best reproduce the observed enlistment behavior. One advantage of neural networks, as
mentioned before, is their ability to develop nonlinear interactions among the independent
variables. It is difficult to specify all of these potential interactions and impossible to know
the functional form of the relationships. None of the studies mentioned above considered
these types of interactions; and, in any case, the specific form of the interactions could not
have been specified before estimation.

Reenlistment/Separation

Retention and reenlistment of enlisted airmen is one of the most heavily researched areas
in the Air Force personnel system. These models are paricularly relevant to the current
research for two reasons. First, extensive data sets have already been prepared and this
significantly reduces the cost of applying neural networks to the problem. Second, the breadth
of research in the area has enabled researchers to view the issue from many perspectives
and apply several state-of-the-art statistical techniques to the problem.  This breadth of
techniques provides fertile ground against which to compare the results obtained with neural
networks.

Most of the models in reenlistment or retention are based on entity data. Researchers
attempt to explain and quantify the factors which affect reenlistment decisions made by individual
airmen. Observations on the past decisions made by airmen are analyzed in the context of
the airman’s characteristics and the conditions facing the airman at the decision point: military
pay, Air Force policies, and civilian opportunities. Some of the models also attempt to model
extension behavior as either a stepwise process or a process simuitancous with the reeniistinent
decision. As seen with enlistment decisions, this is an archetypical classification problem, and
one to which neural networks are particularly suited.

Som~ Specific Models

Specialty-Specific  Models. The research of Saving, Stone, Looper, and Taylor (1985) is
representative of the approaches normally taken in analyzing reenlistment behavior.  They
studied and quantified the factors affecting first-term, second-term, and career airmen making
reenlistment decisions. Based on individuai-level data from the Uniform Airmen Records (UAR)
and the Airman Gain/Loss (AGL) files, the researchers estimated probit equations to explain
the observed reenlistment behavior (see Table 1 for a list of independent variables). One
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unique aspect of the research 1s the detail at which separate equations were estimated; most
estimations were performed at the four-digit Air Force Specialty code (AFSC) ievel. Saving
and Stone (1982) used an early version of this reenlistment model to analyze the impact of
‘peopie programs” (base of preference, joint spouse assignment, etc) on first- and second-term
Air Force reenlistment.

Eighty-tive of the original equations used by Saving et al. were evaluated by Stone, Looper,
and McGarity (1990b) using new data beyond the original estimation sample. Utilizing quarterly
and monthly reenlistment rate projections, the research found that the equations consistently
under-predicted reenlistment rates in about one-third of the Air Force specialties (AFSs). This
led to a respecification of the models (see Table 1) and the addition of an exponentially
declining time variable to reflect changing attitudes toward the military after the mid-1970s. In
addition, the employment rate factor was modified to include two terms: employment rate and
employment rate squared.

An approach similar to the models reviewed above was taken by Lakhani, Gilroy, and
Capps (1984) to investigaie reenlistment in the Army. Reenlistment decisions for individuals
from 98 Military Occupational Specialties (MOSs) receiving SRBs were taken from the 1980
and 1981 Enlisted Master Files (EMFs). These 98 MOSs were then aggregated into 15 Career
Management Fields (CMFs). Separate logit equations were estimated on each of the CMFs.
As can be seen in Table 1, Lakhani et al. used a much smaller set of explanatory variables.

Terza and Warren (1986) extended the Lakhaw et al. model to include a simultaneous
estimation of the reenlistment/separation/extension decision of Army soldiers using a reduced-form
trinomial probit model. In addition to testing trinomial probit, Terza and Warren also estimated
muitinomial logit equations for 15 CMFs. Although specification tests indicated that the trinomial
probit estimator was appropriate, the researchers found that out-of-sample predictions were
inferior to those produced by a simple logit model.

ACOL Models. Warner and Goldberg (1983) developed the ACOL model while analyzing
the reenlistment decisions of Naval personnel. This model attempts to bring all of the pecuniary
factors affecting an individual's reenlistment decision under the umbrella of a single value based
primarily on the present value of potential income streams. The military income stream includes
an accounting for RMC, SRB, and retirement pay, with explicit accounting for tax effects and
expected promotions. A completely separate OLS equation was estimated to predict civilian
earnings. in a similar vein, Black and llisevich (1984) developed an ACOLl-based separation
model using survey data covering all four DOD services. Their estimation data set was based
on a 1-year DOD survey performed in 1978. Biack and llisevich estimated a separate enlisted
personnel equation for each service and an aggregrate DOD enlisted personnel equation. As
seen in Table 1, additional information was available on the survey instrument to provide a
better accounting of individual taste for the military.

he ACQL.-2 model was developed by Smith, Sylvester, and Villa (1989) to inciude a
structural linkage between first- and second-term reenlistment behavior in the Army. They
sought to measure the impact of firstterm ACOL and other first-term independent variables on
second-term reenlistment.  Their findings indicated that the effect of first-term conditions on
second-term reenlistmerts was dominated by actual conditions at the second-term decision
point.
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TABLE 1. INDEPENDENT VARIABLES USED IN FIRST-TERM
REENLISTMENT/RETENTION MODELS

e

Saving Stone Saving & Lakhani Terza & Warner& Bluck & Smith Cartor
of al. ot al Stone ot al. Warren Goldberg lliserich ot al. Kohler et al.
independent Variables 1885 1990b 1982 1684 1086 1983 1984 1989 1988 1987

P
PO A

Demographics

24
X

Minority X X X
Black X X
Hispanic
White & female X
Black & male X
Female
N Single or married
W indicator
: Age less than or
equal 17 years
Age greater than or
equal 19 yrs.
Age
Two or more dependents
Number of dependenls X X X
Spouse in military
Spouse in civilian job

Zn ”‘ '
xX X
XX

'
s
AN
—_—ta..

> >xX x X >
XX

4

Education
Education Level X X
High school or better X X X
Not a high school

graduate X
Some college education X

PR

: *
=P, S I

k4 Aptitude
e AFQT | or Il X X X
T AFQT IV or betier X

o AFQT score or percentile X X
Meantal category | to lIA X X

Pecuniary
X X X!
Prior- & post-month SRB
Present value of military
income X
X Prasent value of civilian
{ incoime X
| Hatio of BRMC to civilian
1 wages X X X b ¢
. ACOL (or version of
§ ACOL) X X X
i

B 1
fﬁ SRB X

o

|

x X XX

Financial assots X
. Employment or
ﬂ{ unemployment rate X X X X X2 X
= Unomploymeni  raie 1n

home state X X
' Employment rale sc iared X

E

i

|

Institutionai

Induction  rate X X

Quarterly force level

i Percent manning allained

; In Air Foice people
7 programs

" Military educational
benefils

XXX
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TABLE 1. INDEPENDENT VARIABLES USED IN FIRST-TERM
REENLISTMENT/RETENTION MODELS
(Concluded)

Saving Stone Saving & Lakhani Terza & Warner& Black & Smith Carter
ot al. ot al Stone e al. Warren Goldberg lliserich et al. Kohler et al.
Independent Variables 1985 1890b 1982 1984 1986 1983 1984 1989 1988 1987
Milltary Aspects

Grade X
Year of Service (YOS) X X
Term of enlistment (TOE) X
DOD service

(Navy, etc.) X
Military ~ spoecialty x* x3
Promation eligibility rate X
Gender/raca/AFSC

combinations x8
TOE/NOS combinations x7
Age less than 18 & 6

year TOE X

Other

Quarterly X
Aflitude (strictly a function

of time) X
Tastes for the military x8
Fiscal Year past 1982 X

' Kohler's survivor model contained eleven separate coefficients for SRB, one for each time period of the survivor
curve.

2Uniike the other models, Smith et &l. used unemployment at time of enlistment; for all others, time of decision is
used.

3 Dummies for base of preference, join spouse and humanitarian assignmert, and an indicator for any people program.
4 One-digit DOD occupation codes.

®Soparate dummiee for S-digit AFSC if over 50 cases for the AFSC; otherwise, 2-digit career field if over 50 cases.
Three dummies: female in support and administration, female in unknown specialty, and black male in support and
administration.

"Five dummies: TOE 4 and YOS 2, TOE 6 and YOS 1, TOE 6 and YOS 2, TOE 6 and YOS 3, TOE 6 and YOS

8From four survoyed variables involving military/civilian scaled comparisons on:  having a say, interesling work, job
security, and job location.

Models Supporting EFMS. A set of Air Force personnel loss models similar to the individual
reenlistment models already discussed has been developed in support of the Enlisted Force
Management System (EFMS) by Carter et al. (1987). These equations were all estimated
using simple OLS on binary dependent variables (linear probability model), and the impact of
all independent variables (including SRB and RMC) was assumed to be the same across all
specialties. A single estimation was run across ail AFSs. As can be seen in Table 1, the
retention equation contains indicator or dummy variables for each AFS. This allows for a
specialty-specific base retention rate; however, no other model parameters are allowed to vary
among the specialties. Contrary to the experience of Saving et al, Lakhani, et al., Warner
and Goldberg, and Kohler, the Carter et al. results showed no statistical evidence that the
effect of SRB varied across specialities.

The performance of the Carter et al. models was tested by Abrahamse (1988) by embedding
the models into an extensive EFMS inventory planning model and comparing the resufting
projections against those of th¢ Airman Loss Probability System (ALPS). The projections from
the ALPS system are based suiely on the behavior of inventory groups in the year preceding
a projection. The ALPS system uses no regressions and does not consider any exogenous
factors such as SRB or RMC changes. Abrahamse’s comparison produced mixed results. In




general, the EFMS models performed somewhat better than ALPS, but failed to fully account
for changes in the decision environment.

o Other Models. Using a much different approach, Lakhani (1987) sought to measure the
' impact of RMC and SRB on quit rates while accounting for the simultaneous impact of quit
rates on SRB. Toward this end, he estimated a pair of simultareous equations between quit
rates and SRB using three-stage least squares. Kohier (1988) also took a quite different
approach to the dnalysis of retention. He estimated survivor functions (Kalbfleisch & Prentice,
1980) for 15 primary occupational specialties and five DOD occupation codes (Table 1 contains
the list of independent variables used in the models).

;| Reenlistment Assessment

Researchers have tested many different specifications of reenlistment models. This variety
of specifications stems primarily from a problem endemic to behavioral modeling. The independent
variables a researcher would like to empioy are either unobservable or difficult to quantify fully.
For example, individual taste for the military style of life would be a very relevant variable;
however, this is not an observable quantity. Researchers attempt to capture some of this
variable’s impact by including other (hopefully related) wvariables such as race, gender, age,
and number of dependents.

o

An example of a variable that is extremely difficuit to quantify is the present value of a
military career versus civilian employment. Qbviously, civilian and military wages are components
of the variable, as is SRB. However, personal discount rates are likely to vary among socio-
economic groups and across genders. The same can be said for employment rates, which
affect the expected probability of earning a civilian wage. In practice, all of these component
variables are included in most specifications to account for as much of the “desired” variable's
effect as possible.

© g -

As can be seen in this simple example, some of these variables (gender and race) appear
! as components of both “desired” independent variables. These component variables actually
I represent two different desired variables, and each of the desired variables may have nonlinear
! effects on reenlistment. In addition, the effects of SRB and military compensation inextricably
) mix with the values of these component variables, For example, the coefficient on the present
value of civilian earnings may not be easily interpreted if gender is included in the equation
and gender influences personal discount rates. In this case, the coefficient on the gender
indicator would contain both gender and unspecified present value effects. Likewise, the
coefficient on civilian wage would reflect some impact of the unmodeled ditferences in personal
discount rates. Thus, the simple interpretation of coefficients from linear (or simple nonlinear)
models may be severely clouded by unmodeled interactions and muitiple contributions among
the included independent variabies.

On a related topic, most of the reenlistment models discussed employed separate reenlistment
equations estimated for each specialty or group of related specialties. In most cases, the
researchers found the impact of many independent variables to be substantially different across
these equations. The conceptual argument usually employed to justify estimation of separate
equations involves the differing civilian labor markets facing airmen in dissimilar specialties.
However, this argument can easily be extended to different races or genders. Each of these
groups faces a somewhat distinct labor market and several other unique conditions. |f SRB
levels impact on the specialties differentially, it is also quite likely that they impact these race
and gender cohonts differentty. The same argument holds for individuais with differing aptitudes
or educational backgrounds. The possibilities for differing impacts, conditional impacts, and
interactions among the inputs are countless. It is almost inconceivable that any simple linear
| specification of a model in this environment accurately mirrors the underling complexity of the
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relationships.  Without this accurate reflection, the relationships estimated by one of these
models are suspect.

Like many other researchers, Saving et al. (1985) originally found that their esiimates of
the impact of changes in the employment rate were unstable and prone to become positively
related to reenlistment. This was in contrast to the a priori theoretical expectation that higher
employment rates should increase an airman’s expected civilian earnings and drive down
reenlistment rates. Stone et al. (1990b) found that the additional flexibility obtained from
adding the squared term kept the impact of employment within its theoretically expected range
(negative). If the combination of a linear and squared term represents the “true” relationship
between reenlistment and the employment rate, the functional form of the original ccnlistment
equations were misspecified. This misspecification (an unmodeled nonlinear relationship) would
cause all coefficients from the model to be biased—particularly tFe coefficient on employment
rate.

Neural Network Systems and Reenlistment Models

The employment specification problem encountered by Saving et al. demonstrates a domain
in which neural networks are particularly appropriate. Several network architectures are capable
of "discovering” such a nonlinear underlying relationship directly from the data set. The
researcher is not required to search through a potentially enormous set of functional forms.
This is especially beneficial in that the search process itself may destroy the validity of the
statistics produced for the final model (see Leamer, 1978). Neural networks do have some
disadvantages for this type of modeling, however. They do not produce coefficients that are
directly interpretable. Because the network can produce complex and intermingled relationships,
the behavior of the network must be examined over relevant ranges of inputs to determine
the effects on reenlistment. However, if a linear model is misspecified, there is little use in
attempting to interpret its biased coefficients. A second disadvantage to the network approach
regards statistical testing of the model. Neural networks utilize many weights to capture the
relationships in a model. There is no neural network analogue to the coefficient standard
errors usually provided by regression techniques. Although it is possible to compute some
statistics of this sort using resampling methods, most neural network models are validated
against separate holdout samples.

The simultaneous reenlist/separatefextend decision examined by Terza and Warren (1986)
provides another example fcr applying neural networks.  All three of the neural networks
described in Section Il include these multi-class decisions in their general architectures. In
all three cases, the only visible change to the architecture is the addition of an extra output
neuron. As mentioned in Section I, back propagation can perform vector-to-vector mappings.
in this case, the input vector is merely the set of independent variables and the output vector
becomes three neurons representing the three possible decisions. The PNN architecture simply
estimates three underlying PDFs rather than two. Similarly, each LVQ reference vector can
be labeled with one of three decision paths. In all cases, the simultaneous effects of all
inputs on all potential decisions are considered.

Although neural network techniques are directly applicable to models with the ACOL construct
as an input, ACOL runs contrary to the strengths of neural networks. Information that might
be constructively used in developing nonlinear relationships has already been embedded and
lost in a linear aggregate. If the ACOL construct has been properly constructed, a neural
network will be able to “learn” the linear or nonlinear relationship between ACOL and reenlistment.
However, if this relationship is linear, a standard estimator will perform as well as the neural
network. | the relationship is nonlinear, is the linear ACOL construct likely to accurately
represent the “true” pecuniary horizon facing the decision maker? Assuming the ACOL construct
could use some adjustment from other demographic, aptitude, and education variables, what
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interpretation can be placed on the impact of ACOL alone? Neural networks can be expected
to perform better if provided with all of the information so that any required nonlinear relationships
can be developed. if ACOL is included as a neural network input, many of its components,
as well as factors found important in other research, should also be included. In this manner,
the network can adjust for any biases built into the ACOL construct.

Neural networks can also be applied to model-seeking problems. Carter et al. (1987) found
at least 10 significant intgraction terms which were included in their first-term continuation
equation (see Table 1). Although it affects the statistical interpretation of the final coefficient
standard errors, this type of model-seeking or specification search can prove fruitful in developing
realistic models. In general, the exact form of any relationships and interactions cannot be
specified before estimation. The widespread use of linear or simple nonlinear functional forms
resufts more from computational simplicity than theoretical imperative. In addition, the parameters
of the simple linear specifications are easy to interpret. As seen in Section |, neural networks
offer a solution to this model-seeking problem. Because they inherently allow for the formation
of nonlinear and interacting relationships, neural networks provide a method of seeking the
model form supported by the empirical evidence in the data set.

Prior Service

Prior-service accessions comprise a much smaller component of the force than
non-prior-service accessions, and they have traditionally had less impact on force size and
management than on reenlistment rates. There have been correspondingly fewer studies of
this manpower market. Stone and Saving (1983) undertook one of the few studies of this
area. These researchers modeled the Air Force prior-service market by Break-in-Service (BIS)
groups. For each of five BIS groups, they estimated a separate equation (OLS and two-stage
least squares) containing independent variables for unemployment, RMC-to-civilian-wage ratio,
recruiting effort, time of vear, and the distance to prior-service recruiting goals.

Inventory Planning Models (IPMs)

As mentioned earlier, inventory models typically serve one of two purposes: long- to
middle-range planning or short-range programming. In general, IPMs attemot to model and
project some portion of the personnel and information flows shown in Figure 7. These models
typically treat the personnel inventory as either a matrix of relevant persoimiel cchorts or as
a collection of separate individuals (entities). Most IPMs use some form of estimmaied reenlistment
or retention equation to help project retention, and they may also inciude empirical models of
the accession market. The resuits of other analyses in areas such as retraining, prior service,
attrition, and extension may also be incorporated into an IPM. These empirical or analytic
results are usually combined with a base personnel inventory (known “personnel system
constraints”) and policy factors to develop a system of personnel stocks and flows. Virtually
all IPMs exist as computer-based, discrete simulations utilizing varying amounts of analytic
results on components of the personnel system.

Cohort-Based Inventory Models

An example of an IPM is the Air Force Retention Analysis Package (AFRAP), which serves
primarily to analyze the impact of various factors on retention (Stone, Wortman, & Looper,
1989). This package is basically a computerized implementation of the reeniistment resuits of
Stone et al. (1990b). All of the occupation-specific equations from Stone st al. are combined
with a model of retention to produce a small IPM. The impact of changes in pecuniary factors
and AFS composition (demographic attributes, education level, etc.) can be evaluated on both
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shert- and long-term retention. The package also has the ability to solve for SRB levels required
to obtain a specified retention rate given the economic conditions and AFS composition. AFRAP
does not attempt to model accessions, retraining, or assignments.

A second example of an IPM spectrum is the Enlisted Force Management System (EFMS),
which seeks to model virtually all aspects of the Air Force personnel system. As originally
described (Carter, Chaiken, Murray, & Walker, 1983), EFMS sought to support most force
management  activities: regiuirements determination, personnel planning, authorizations
management, and programming. To support all of this analysis, EFMS was to include three
mutually consistent IPMs:  shont-term to address the remainder of a year, middle-term for
monthiy prnjections up to 7 years, and long-term for monthly projections for an arbitrary number
of years {Carter et al. 1987). Though EFMS is not yet completed, several components will
be discussed below.

The EFMS Bonus Effect Module (BEM) is based on the EFMS middle-term loss equations
(Carter et al., 1987) and allows analysis of bonus effects without running the large, entity-based
EFMS IPM (Carter, Skoller, Perrin, & Sakai, 1988). Similar to AFRAP, BEM is designed to
perform analysis on a single selected AFSC and produce inventory counts by YOS. BEM
provides more cost information than AFRAP but assumes that economic conditions are stable.
The primary policy level available to the BEM user is bonus.

Micheison and Rydell (1989) produced another IPM based on the EFMS middle-term loss
equations of Carter et al. (1987). The Aggregate Dynamic Model (ADAM) is a cohort- or
cell-based IPM which projects the enlisted force personnel inventory along three dimensions:
grade, YOS, and TOE. In addition, the model retains another inventory dimension, years to
end of term (YETS), to provide accounting required by the loss equations. ADAM requires
inputs on economic conditions, accessions, some separations, and promotions. Unlike AFRAP
and BEM, ADAM does not provide AFS-specific projections. It does, however, produce aggregate
inventory projections in a more accessible format and provides for a more complete accounting
of inventory flows.

The Enlisted Policy Planning System (EPPS) represents another inventory model based
largely on empirical reenlistment or loss equations (Syllogistics, inc. & RRC, Inc., 1989). The
system was designed as a planning model for policy analysis to determine the effects of
program and policy changes. EPPS adds a 4-digit AFSC to the breakdown along the YOS,
grade, and TOE dimensions found in ADAM. The primary behavioral models consist of the
reenlistment/separation equations estimated by Stone et al. (1990b). Inputs into the EPPS
model include economic conditions, AFSC/grade manning authorizations, and personnel policy
variables.

Other Inventory Models

The Airman Loss Probability System (ALPS) produces loss probabilities for each airman in
the final UAR. These probabilities are normally used to derive loss rates and reeniistment
rates for each AFSC/grade/YOS cohort. Unlike the behavioral reenlistment models, ALPS bases
these rates solely on the two most recent UARs and a transaction file containing promotions,
demotions, gains, and losses. The resulting transition rates are based on the observed behavior
in the cohorts and do not explicitly account for economic or policy factors such as unemployment,
SRB, RMC, etc. Despite its simplicity, ALLPS rates have been utilized in several IPMs: the
Airman Inventory Projection System (AIPS), the Airman Force Program and Longevity Model
(AFPAL), and the Dynamic Model. For the purposes of inventory modeling, the reenlistment
efforts of Saving, Stone, Lakhani, Looper, Goldberg, Black, and others serve to improve the
foundation on which many inventory transitions are based by adding new information. Neural
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networks may further improve this base by allowing unique and meaningful combinations of
this information.

Fernandez, Gotz, and Bell (1985) developed a model of airman retention based on the
dynamic model of Gotz and McCall (1980, 1985). Though not a complete IPM, the dynamic
retention model explicitly incorporates the sequential decision-making process involved in making
multiple reenlist/separate decisions. It also takes account of tastes and past conditions by
explicitly modeling the entire sequential decision process.

Stone, Saving, Turner, and Looper (1990a) developed a set of four equations which, though
not a true inventory model, describe aggregate Air Force accessions (prior- and non-prior-service)
and reenlistments (first- and second-term). In addition to estimating the equations by OLS,
Stone et al. estimated the entire system using a generalized least squares (GLS) estimator.
A specification test between the OLS and GLS models indicated a correlation among the error
terms and a significant difference in the coefficients across the two models. The GLS estimator
performed better in a simulation of the two models over a time period prior to the estimation
sample. Conversely, the OLS estimator performed better in a post-estimation time period.

Cther inventory models include the Integrated Simulation Evaluation Model Prototype (ISEM-P)
model developed by Rueter, Kosy, Caicco, laidlaw, and Looper (1981), This model was
designed to predict personnel system implications of changes in policy information control (PIC)
policies and procedures and the impact of changes in national labor markets. The Career
Area Rotation Mode! (CAROM) represents a very different approach to inventory modeling
(Looper, 1979). The goal in CARCM is to optimize enlisted assignments on a monthly basis
using an entity-based model for a single AFSC. The model uses Monte Carlo techniques and
linear programming to allow policy gaming for planning purposes.

Neural Networks and IPMs

Neural networks could be easily incorporated into a system such as AFRAP. The networks
would simply replace the probit estimations currently used to model each AFS’s reenlistment
decision. The potential benefits are the same as those presented in our earlier discussion of
reenlistment models. The network models allow nonlinear impacts and interactions among the
input factors. In essence, the neural networks could capture more complicated and potentially
more realistic models of the process. As with AFRAP, the primary application for neural
networks in BEM and ADAM would invoive the development of more complex loss functions.
The primary use of neural networks in EPPS would be to improve the behavioral equations
and perhaps analyze some of the assumed fixed flow rates.

Without extensive theoretical g-oundwork, neural networks could not be directly applied to
the dynamic retention model. The dynamic retention model's estimation and simulation methods
are specifically tailored to its sequential siructure and the specific derivation of its aggregate
present value measure. However, neural networks can capture both the sequential nature of
the decision-making process and the generation of a meaningful composite variable. The
sequential decision process is addressed using a recurrent form of back propagation (Elman,
1989, 1990). Meaningful composite variables are derived by filtering several input variables
through a single neuron. This neuron will then represent the “best" nonlinear combination of
the chosen inputs for predicting the observed behavior (separationfreenlistment). “Best,” in this
context, means simply that composite variable which can be used to produce the closest sum
of squared error (or maximum likelinood) fit to the observed airmien behaviors. In this manner,
and unlike ACOL, the composite variable produced by the network is not restricted to &
prespecified functional form.
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Neural networks, and particularly back propagation networks, are directly applicable to the
simultaneous accessions/retention niodel of Stone et al. (1990a). In this case, the network
outputs are marely the two accession rates and the two reenlistment rates from the original
model.  Although it is possible to develop separate networks foi each equation, this model
would probably be best treated with a single network having four output neurons. All of the
independent variables used in the estimation would serve as inputs, and the network would
develop an internal mode! of the system in its hidden-layer neurons. As with the other models,
the ability of the network to generate nonlinear relationships could be of considerable importance
to the simultaneous accession/retention :odel. A potential addition to the model involves the
use of Elman’'s simple recurrent network (SRN). With this network, the representation developed
in the hidden layer is used as network input for the ensuing time period. In this manner, the
network is able to develop temporal refationships and account for sequential adjustments in
the system.

Other Personnel-Related Models

The models reviewed above are drawn primarily from areas applicable to military personnel
inventories, and they focus on the primary personnel flows shown in Figure 7. Personnel
decisions must be made in many other ancillary areas, and special programs must be
administered.  The policies adopted in these areas and programs can often benefit from the
application of analysic and modeling tools.

Armed Forces Health Professions Scholarship Program (AFHPSP)

One such area involves the AFHPSP. McGarrity (1988) developed a policy-specilying model
{see Fast & Looper, 1988) that could be used to assist a review board iii selecting candidates
to this program., The inputs to the mode!l consisted of 13 factors such as academic potential,
military experience, and personal experience. These factors were utilized to develop a standard
hierarchical policy-specifying model based on the input of subject-matter experts (SMEs). The
SMEs supplied pairwise relationships between the factors, and payoff values for the resulting
combinations.

Neural Networks and the AFHPSP

Applyi.'g neural networks to this problem would produce results Ssimilar to policy capturing
(Fast & Looper, 1988). A network could be trained using the 13 inputs for each applicant
and the review board’s score for the applicant. The resulting model would be analogous to
a nonlinear policy-capturing model, which seeks its own nonlinear specification. Factors or
combinations most important to the review board in rating an applicant could be located by
analyzing the resulting network. Thase combinations of factors would be determined by the
board's observed actions rather than by surveying their opinions. In addition, it is possible
to appi, the policy-capturing technique of interrater clustering to the hidden nodes in a neural
networh. In this manner, if separate networks are estimated for each board member, it becomes
possible to identify rating patterns which differ among board members.

Recruiter Asgignments

The recruiter assignment model developed by V.ooper and Beswick (1980) might be considered
an accession model.  However, its primary goal is to determine the optimal allocation and
assignment of recruiters.  The Looper and Beswick model uses a nonlinear estimation equation
and dynamic programming to maximize the number of recruits subject to a fixed number of
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recruiters. As with many of the other models discussed, the primary use of neural networks
in this application would involve the development of a more flexible nonlinear function.

IMPLEMENTING NEURAL NETWORX
PERSONNEL MODELS

As discussed in the previous sections, neural networks have several potential applications
in personne! modeling. This potential should be evaluated in at least two different areas:
reenlistment analysis and inventory projection. These areas represent some of the more
important personnel issues and also very different challenges as empirical problems. Reenlistment
analysis is representative of many classification problems in the Air Force. It remains one of
the most thoroughly analyzed personnel issues. Alternately, inventory projection involves
analyzing and forecasting personne! invantories.

Most current neural network applications are directed toward relatively small, well-understood
problems (see Wiggins, 1990a). These types of problems have been chosen for two primary
reasons. First, neural networks can be computationally intensive and require long simulation
times on standard serial computers. Most large networks implemented on serial hardware
require exponentially longer training times than do small networks. Though hardware solutions
are becaming available to address this problem, they are currently rather costly. Second, the
performance of any model on large problems is much more difficult to assess. Most research
projects have been aimed toward testing neural network capabilities in various problem domains.
if the network's performance relative to other methods cannot be established, its capability is
difficult to assess. Model assessment is critical to most neural network research. Although
theoretical results have placed high upper bounds on the capabilities of neural networks, these
results have yet to be extended to training and training dynamics. Despite a host of promising
empirical results, the uncenrtainties about training make validation and assessment of neural
network modelc very important,

For these same reasons, preliminary personnel research using neural networks should be
kept to a reasonable scale. In the two tasks addressed below, an attempt has been made
to balance atteniion to substantial problems with considerations of meaningful assessment and
cost of performance. Each task addresses important personnel areas, while retaining a modest
scope. More traditional personnel models are available against which the performance of the
neural network models could be compared. |If these preliminary network models exhibit superior
capabilities, larger models requiring hardware support might be attempted. However, many
other moderately sized personnel applications could benefit from smaller software-based neural
networks.

A final consideration in selecting problems to be modeled involves data availability. As
discussed in Section I, most neural network architectures require more information than
traditional techniques require to produce a model. With most statistical techniques, the functional
form ot the model is imposed by the researcher. Because neural networks infer the form of
the model from relations in the training data, sufficient data must be available to make
meaningful inferences about the underlying process structure. More information is required
from the training data because the researcher does not supply prior information in the form
of an imposed model structure.

Reenlistment Model

The model-seeking capabilities of neural networks make them particularly suited to individual
reenlistment modeling.  As discussed in Section lll, rarely can the functional form of a behavioral
reenlistment model be specified by theory alone. From observed b haviors, neural networks
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have the ability to directly develop internal representations of a model's form. Reenlistment
models meet all of the criteria for good test model candidates:

+ Reenlistment models are valuable tools in many aspects of personnel analysis and
management.

+ They have been extensively researched, and many state-of-the-art models are available
for comparing resufts,

+ The models are relatively small and have few enough inputs to allow analysis and
evaluation of the results,

»+ Data on observed reenlistment behaviors are plentiful and readily available.

Model Structure

A major goal of the present research was to explore and assess alternate neural network
architectures. As seen in Section Ill, and in Wiggins (1990a)}, many architectures are available
and most have several variants that emphasize the solution of particular problems. In addition,
modified techniques and improvements are being developed at a rapid rate. The research in
reenlistment modeling should remain sufficiently flexible to allow investigation of new and
promising neural network techniques. In light of this, the research should be restricted to a
small set of AFSCs. These should be chosen such that the following AFSC characteristics
are included: a small AFSC, a large AFSC, an AFSC receiving little or no SRB multiples
over the period analyzed, and a Cronically Critical Shortage (CCS) AFSC with substantial
changes in SRB. This will allow for some comparison of network models developed from
large and small data sets in the same problem domain. Because the first-term equations
contain the richest data and structure, only first-term reenlistments need be considered.

The neural network should be trained on continuous values underlying some of the indicator
variables used in prior reenlistment studies. Use of the continuous variables removes the
judgment and experience of the researcher from the specification. Because the network can
develop nonlinear response surfaces, it is not necessary to impose a specific discontinuous
indicator variable.

in addition to modeling the reenlistment/separation decision of eligible airmen, the neural
network architectures should also be applied to extension behavior. This model more completely
represents the choices facing an airman near his ETS. In this case, the decision becomes
reenlist/separate/extend and the inputs remain those from Table 1. As mentioned earlier, most
neural network architectures extend quite naturally to multi-class decision problems.

Modeling Techniques

Many neural network architectures are applicable to classification problems such as
reenlistment decisions. All architectures discussed in Section Il (back propagation, LVQ, and
PNN) are particularly suited to classification and should be applied to reenlistment modeling.
The strengths and weaknesses of the network architectures in this arena can then be compared
against each other and against the resuits of probit anaiysis. Each of these architectures can
also be used to analyze the more complete reenlist/separate/extend problem.

In all cases, any modifications or additions to the architectures which improve generalization
performance should be tested. For LVQ, this will involve testing differing numbers of reference
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vector neurons. For PNNs, this usually involves only the setting of the Gaussian smoothing
parameter. In addition, weighting of the inputs should be employed to increase the use of
information in the sample. These weights can be developed using maximum likelihood techniques
and the hold-one-out sampling process described earlier. In the case of back propagation,
several features designed to improve generalization should be evaluated:

* Holdout sample to stop the training procese,
* Exponentially declining network weights to reduce sensitivity to noise.

+ Alternative transfer functions, such as the one based on Tukey's distribution.

Data Requirements

Because the three neural network architectures require precisely the same data that Stone
et al. (1990b) employed to estimate probit reenlistment models, the Stone et al. results could
serve as an excellent testbed for neural networks applied to Air Force personnel system
modeling. As mentioned in Section lll, these data were compiled by matching the UAR and
AGL files from 1874 to 1986. Each AFSC was segregated into a separate data set for
estimation.  Additional information was appended to the files from BLS and Census ¢ources
{civilian wages and employment rates). These data sets could be used directly to train and
validate the neural network models. Although not used by Stone et al., information on extensions
is also available frem the AGL files.

Validation and Testing

Many validation methods are applicabl:: to neural network and probit reenlistment models.
Two distinct methods shouid be considered here. In the first method, a set of observations
on individuai airmen are randomly withheld from the training (or estimation) sample. This
holdout sample would then be used to test the model which results from training (estimating)
on the training sample. Predictions of the behavior of each individual in the holdout sample
are made by each model, and these predictions are compared against the actual decisions
observed. Each of the models—probit ind neural network—produces continuous predictions
which can be viewed as the probability of reenlisting. By use of a cutoff value, these
probabilities may be interpreted as either a reenlist or a separate decision. For example, a
predicted reenlistment probability of 0.6 is usually construed to denote a reenlistment, whereas
a prooability of 0.3 implies a separation.

With such binary outcomes, a simple measure of success is the hit-rate or percent of
successful predictions.“ This measure was used extensively in the neural network classification
literature reviewed in Wiggins {1990a). it provides an intuitive method of comparing the
performance of different models against observed behaviors. The receiver operating characteristic
(ROC) from signal detection theory provides another validation measure for binary outcomes
(Spoehi & Lehmkuhle, 1982). The ROC is also based on prediction hits. Unlike the hit-rate,
the ROC can be tuned by varying the cutoff value. Though the ROC measure has some
weaknesses in this context, both of these measures should be apphed to the neural network
models developed. The tests will require retraining each network on the randomly selected

14 All of the validation measures for evaluating the reenlistment models ard the simultaneous accesalon/retention models are
discussed in greater detail in .stone et al. (1990b).




training samples before comparisons could be made using the holdout or validation sample.
Probit models should also be estimated on the training sample, with the ROC and hit-rate
measures computed over the holdout sample. The probit model can then serve as the basis
for evaluating the relative out-of-sample performance of the network models. These tests
should bhe repeated for ee~h of the four selected AFSs.

In addition to the validation tests on a single holdout sample, the hold-one-out validation
sampling described in Wiggins (1990a) could be applied to the probit and PNN models. Using
hold-one-ont sampling for validation allows more of the data from the original sample to be
used in estimating each model. This may be particularly important for the PNN, wiich is
estimating a high-dimensional PDF. The other neural network architectures could also make
good use of any additional training observations in forming a model. However, the longer
training times required for LVQ and back propagation make hold-one-out sampling unworkable
for these architectures.

As mentioned earlier, each of the models produces continuous reeniistment probabilities.
Because of this, their perforinance could aiso be analyzed using any of the RMSE-based
mensures described in Stone et al. (1990b):  Thiel's inequality coefficient, Janus quotient,
preuicted/actuals correlation, normalized prediction error, and simulation R-squared. However,
given the binary naturc of the actual outcome (reenlist/separate), interpretation of these measures
can be vague. Most are scaled such that a value of 0 or 1.0 implies some form of perfect
prediction or complete failure to predict. However, the binary nature of the actual outcomes
usually prevents any continuous output from approaching perfect prediction. For this reason,
although these RMSE-based measures can actually contain more information than do the binary
measures, hit-rates typically are used to evaluate binary outputs.

The second validation method is related to the use of reenlistment models in IPMs and
was utilized by Stone et al. (1990b) to validate their original reenlistment equations. This
method involves projecting the reenlistment behavior of temporal cohorts of decision makers.
The probit equations were estimated over the 1974 to March 1982 time period. These equations
were then used to project the reenlistment rates over the April 1982 to April 1986 time period.
The ability of a model to accurately project the behavior of temporal cohorts is critical to its
behavior in an IPM where these rates are its sole output. The neural network models could
be evaluated using the same temporal sub-samples employed by Stone et al. (1990b). The
temporal cohorts would be sampled quarterly over the out-of-sample time period, with the
projected reeniistment rates for each quarter compared against the actual rates for the quarter.
The Janus quotient, Thiel's coefficient, and simulation R-squared would be used to compare
the performance of the models. In addition to these RMSE-based measures, the normalized
prediction error (also RMSE-based) and the correlation between actual and predicted rates
should be computed for each model.

Evaluation and Interpretation of Models

The complexity of neural network models makes them more difficult to interpret than standard
parametric models. Ewven if the mcdel performs well in-sample and out-of-sample, the reason
for its performance and its behavior over different input ranges cannot be evaluated directly.
The very aspect of neural networks that gives them a powerful analytic capability makes them
rather difficult to interpret.  The nonlinear and interacting relationships captured by a network
are ambedded within the network's weights, forming complicated composites of the inputs.
Evaluating the behavior of such a network requires considerably more effort than checking the
sign of a regression coefficient. However, the results of such an effort could reveal interesting
structures in the underlying model. For example, Stone et al. (1990b) found that the employment
rate had a more theoretically appealing impact on reenlistment if it entered the probit equations
in beth linear and squared forms. Carter et al. (1987) found several combinations of indicator
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variables which had independent impacts on reenlistment likelihood. Certainly the neural
network reenlistment models should be examined to see if these same structures emerge.
Furthermore, the entire surface of each network's response surface should be searched for
nonlinear impacts. The surface should also be searched for interaction areas where the impact
of one variable on reenlistment is affected by the level of another variable.

In general, these types of interactions and nonlinear relationships can be found only by
searching over the model's response surface. The marginal effect of changing one iaput while
all other variables are held constant could be evaluated at any point cofresponding to a set
of fixed input vaiues. This effect is simply the derivative of the probability of reenlistment
with respect to a change in one input variable while all other variables are at a pre-specified
point.  This derivative can be derived analytically for back propagation networks by simply
propagating the error all the way back to the input layer. PNN and LVQ networks require
the use of numerical methods to compute the derivative or marginal effect. Still, in all three
cases, the computations are straightforward.

With any of the three neural networks, these marginal effects can change from one paint
on the model's surface to another. For example, changing RMC by $100 per month when
unemployment is relatively low, say 6%, may have a large effect on reenlistment. Making this
same $100 change when uremployment is 20% may have very little effect. With civilian job
opportunities severely limited, airmen may not require an added incentive to remain in the
force.  With linear models, the marginal effects are constant at all points on the model's
surface.  Similarly, with log-log models, the marginal percentage effects are the same at all
points on the surface. The only way to introduce nonlinearities is to specify them directly in
the function as did Stone et al. Likewise, the only way to introduce co-dependent or interacting
effects, such as the one between RMC and employment, is to explicitly specify the form of
the relationship. Only Carter et al. (1987) examined co-dependent effects, and they looked
only for effects between indicator or dummy variables.

A trained neural network model does not “announce” the form and location of interactions
and nonlinearities; however, the response surface of the model could be searched for such
interesting features. One way to search for such features involves evaluating the marginal
effect of each variable at all points on a multidimensionai lattice spanning all inputs. The
extent of the lattice in each input dimension could be determined from the observed range of
the input or by a prior knowledge of the relevant and interesting range. This range is then
subdivided into a small number of segments (usually evenly spaced), and the process is
performed for each input variable. The set of all possible combinations formed by the endpoints
of these segments produces a lattice in the input space. The marginal effect of each input
variable is then evaluated at all lattice intersections. Although this method effectively covers
the input space, it is most effective in low-dimensional spaces (i.e., when there are few inputs).
In high-dimensional spaces, the lattice method suffers from exponentiai increases in the number
of points which must be evaluated. For example, with 25 inputs and only 3 lattice points in
each dimension, over 840 bilion points must be evaluated.

An alternative to the lattice method in high-dimensional input spaces involves evaluating
the marginal effects at each point in the training and/or validation sample. In this manner,
the density of sampling for the search is determined directly by the density of the input data.
With the lattice method, many of the spaces searched may contain few, if any, individuals.
By using the sample points, the search is directed toward areas where iarge numbers of
decision makars tend to cluster. As a secondary effeci, the search focuses on those areas
where the model could be expected to perform best. Almost any estimation method, including
neural networks, produces its most generalizable predictions in those areas of the input space
with the highest exemplar density. Because of the fairly high-dimensional nature (18 inputs)

of the Stone et al model, this method of searching for interesting features is expected to be
quite useful.
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Given the computing power required to evaluate a network model in this manner, only the
models which perform best with respect to the validation criterion would be evaluated. Those
evaluated should include at least one model from each network paradigm. All nonlinear and
co-dependent marginal effects from each model should be reported and compared. Specifically,
the relationship between employment rates and reenlistment should be evaluated and compared
to the nonlinear relationship found by Stone et al

Inventory Model

The second model to be addressed using neural network techniques is a projection of
inventory flows, which could be extended into an aggregate IPM. The model is small enough
to support an IPM whose results would be easier to evaluate than those of a disaggregate
IPM. Most IPMs require extensive analysis to provide any information on their performance.
Even then, their disaggregate nature could make the interpretation of results difficult (see
Abrahamse, 1988). In addition, the complexity of simulating with most IPMs, and the data
required to perform a projection, typically limits validation tests to one or two periods. This
is scant information upon which to base validation conclusions. It is hoped that an aggregate
IPM will prove more tractable; however, as discussed below, even this simpie IPM poses some
problems of scale. In general, the other criteria for model selection have been met: Preliminary
results from the model can be compared with those from another model, and a reasonably
large training sample is available.

Arn exceilent candidate IPM is the aggregate accession/retention model AARM) of Stone
et al. (1990a). To utilize this IPM, a neural network model could be developed which directly
parallels the AARM. This network model could then be extended to account for more inventory
flows and YOS cohorts. Finally, the resuking network model could be built into an IPM which
projects aggregate force levals.

As shown in Table 2, the AARM is composed of four equations: NPS accessions, PS
accessions, first-term reenlistment, and second-term reenlistment. The model was estimated
using GLS on monthly data from October 1979 to September 1987. These same data could
be used to develop the neural network models and IPM. As with the AARM, the January
1979 to September 1979 data and the October 1987 to September 1988 data should be used
to validate the resulting models.

Initial Network Model

The initial neural network model should use exactly the same inputs and ocutputs as those
used in the original AARM. As seen in Table 2, the input variables include measures of recruit
quaiity, wait-time in the DEP, civiian empioyment, reiative military/civiiian wages, early outs,
eligible decision makers, force-level goal, and accession goals. The network model would be
trained by back propagation on a network using the 15 inputs used by AARM and having four
output neurons (each representing one of the four AARM dependent variables). Techniques
for improving the generalization of back propagation network models should also be applied
to this problem.

Once the network model has been trained, the predicted accessions and reenlistment rates
should be compared against the actual rates (both in-sample and out-of-sample). Again, all
of the continuous validation measures mentioned previously should be applied to the comparison.
These measures could then be compared to the same measures computed for the original
AARM. As with the reenlistment network model, this network flow model should be evaluated
to search for interactions and nonlinear relationships. These relationships would be particularly
interesting if the network model displays superior out-of-sample performance. In addition, the
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range of marginal effects of the independent vanables on each of the outputs chould be
computed over all training observations.  The distribution of these effects could then be
compared with the static GLS regression coefficients.

TABLE 2. SIMULTANEOUS ACCESSION/RETENTION EQUATION SYSTEM

Structural Equation

Prior-Service First-term Second-Term
Accession Accession Reenlistment Reenlistment
Right-hand-side variables Rate Rate Rate Rate

Ratio of AFQT Categories 1 or 2
to all other accessions

Average time in Delayed
Enlistment Program (DEP)
Civilian employment rate

Ratio of military to civilian wages
Number of Air Force recruiters
Force-level goal

Accession goal

Prior-service accession goal X

Ratio of eligible to ineligibie

decision makers (first-term) X

Ratio of eligible to ineligible

decision makers (second-term) X
Number of first-term early outs X

Number of second-term early outs X
Quanerly indicators X X X X

x

XX XX XX
> X X
X
>

The simple recurrent network (SRN; Elman, 1989) provides another interesting method of
modeling the AARM outputs. As discussed earlier, this modification of back propagation could
incorporate sequential effects into its structure. It is quite likely that temporal adjustments are
being made in the enlisted inventory at the monthly level. If so, and these adjustments have
a regular structure, the SRN may be able to capture some of the system's dynamics. The
resulting model should be validated and compared against the results of the standard back
propagation model and the original AARM.

As originally specified, the AARM does not project sufficient information for an aggregate
IPM.  This structure should be extended to provide for projections of attrition and retirement.
The same inputs could be used, but the network will now have six outputs: two reenlistment,
two accession, one attrition, and one retirement. If possible, a YOS distribution should also
be tested as input to the model. This distribution would provide some information on retirement
eligibles and the number of airmen in high-attrition YOS.

If the network models are successful in projecting aggregate inventory flow rates, they
could be extended to output a complete set of flows required to nroject a reasonable aggregate
inveritory model.  The structure of the inventory would be kept as simple as possible, yet
retain information necessary to track the aggregate inventory as it ages and cohorts approach
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decision points. The inventory could be dimensioned along YOS, YETS,'® and in-extension'®

ohorts.  Using 3t YOS, 6 YETS, and 2 in-extension inventory dimensions yields an inventory
representation with 372 cells. The number of accessions by month could be tracked to allow
for monthly aging of the inventory.

The network model could use the same 15 aggregate inputs from the AARM; however,
loss and extension rates would be output for each appropriate inventory cell. Reenlistment
rates could be projected for 27 YOS and both in-extension cohorts, for a total of 54 rates.
Attrition ratas could be projected for each inventory cell (372 rates). The last 11 YOS would
be considered retirement eligible for 6 YETS and 2 in-extension categories (132 rates). Finally,
extensions would be allowed in 124 of the inventory cells. In ail, the network model would
nroject 682 inventory flow rates on a monthly basis. In addition, the model would continue
to project aggregate PS and NPS accessions.

Little change would be required in the structure of the neural network to accommodate this
expanded model. In place of 4 output neurons, the network would have 684 output neurons.
Despite the simplicity of the model, this network would become quite large. It would be
considerably larger than any of the networks considered in the applications reviewed in Wiggins
(1990a). This model would provide a test for the ability to scaie network solutions to problem
domains with many simultaneous outputs and reiationships. The scaie of the model is at the
limit which can be reasonably addressed with software simulators. Any larger model wouid
likely require hardware support during its training phase.

Data for all of the flow rates could be derived from the AGL. The IPM could be treated
as a standard discrete monthly modei where the neural network controls all of the flow rates.
Aging would be the only inventory flow not controiled by the network modei. In addition to
the aggregate inputs from AARM, representations of the existing inventory should be considered
as inputs to the model.

Despite the YOS inventory breakdown, the model described above is still primarily an
aggregate IPM. No cell-specific information is provided upon which to base the projected loss
rates for individual cells. The use of cell-specific information should be explored. In particular,
YOS-specific average RMC and SRB values could be derived from UAR counts and military
pay tables. The airmen inventories in neighboring cells are another potential source of input.
This cell-specific information would be provided to each output neuron through an extension
of the back propagation architecture. Each set of outputs for a given inventory cell would
contain a sub-network which processes only cell-specific information.  This sub-network could
be combined by the output cell with information from the aggregate input network. In this
manner, each inventory cell has both aggregate and local factors which influence the flow
rates affecting the cell.

A moie compleie model would requite sume measures of Air Force demand for personnei
in each cell, such as authorization or manning requirements.  Authorization and manning
information would be difficult to collect for the long time series required. This process should
be undertaken it the results from this task are extended to a larger inventory model.

15 As mentioned earlier, YETS is used here to represent years to and of term of service. It measures the time remaning before
a reenlistment decision must be made.

18 In-extension mersly designates whether the 1irman is currently in an extension to a prior term of service or in a “new” term of
sorvice. lt can assume only two values.
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Validation

The validation of the resuiting IPM should be based primarily on its abilty to project
aggregate inventory stocks and fiows. Because the inventory could be used recursively in a
projection, the IPM can perform multi-step inventory projections. The model would require only
a knowledge of the 15 independent variables and military pay tables for each projection period.

This would allow two techniques to be applied when validating the IPM: one-step projections,
and multi-step projections.

One-step projections are made such that the inventory on which a projection is based is
the actual inventory before the 1-month projection. Using the Stone et al. (1990a) data, a
one-step projection could be made for each month of the in-sample and out-of-sample data
sets. The resulting 96 in-sample and 21 out-of-sample projections should be evaluated using
RMSE-based validation techniques. Separate and joint validation measures should be computed
for the in-sample and each out-of-sample (pre- and post-estimation) time period. Validation
measures should be computed for each of the aggregate flows: PS accessions, NPS accessions,
reenlistments, extensions, attritions, and retirements. In addition, validation statistics could be
computed for the total inventory level. It would also be possible to compute validation statistics
for individual inventory cells and their associated flow rates.

Multi-step projections require that the model continually operate from the same inventory.
An actual inventory is provided at the start of the projection, but each successive projection
is based on the inventory forecast from the last time period. This type of projection allows
each forecast error to become built into the next period’s forecast. Primary concerns addressed
by this type of validation are model stability and sensitivity to errors or starting conditions. By
starting the model from each sample period and projecting over several years, both the stability
and sensitivity measurements could be addressed. The projections for a single period in time
could be evaluated when the projection begins at differing starting points. By observing the
model's behavior over long multi-step projections, its stability could be assessed.

The inventory model should be evaluated using all of the validation measures. Relative
performance on aggregate reenlistment and accession rates between the network and AARM
models should be compared. The accuracy of the final network IPM in projecting stocks and
flows should be appraised using both one-step and multi-step projections. Stability and the
ability to adjust to initial conditions should be assessed with multi step projections. All of this
inforrnation should be evaluated in conjunction with the computation requirements of the neural
network model. If the model's performance is acceptable, prospects for expanding the neural
neiwork IPM toc a disaggregate inventory could be assessed.

CONCLUSIONS
Neural networks exhibit several theoreticai and practical capabilities that are very attractive
from a data analysis and model-building perspective. Primary among these capabilities is the
ability to detect artibrarily complex, interacting, and nonlinear relationships among the factors
of a particular model. In addition, a review of the neural network literature (Wiggins, 1990a)

reveals that neural networks have demonstrated substantial success in areas currently dominated
by traditional statistical techniques.

Many areas of personnel analysis and management may benefit trom the richer and more
complex models offered by neural network methods. To assess i@ potential for applying these
promising new techniques to personnel research, several test models should be developed in
areas having existing models based on more traditional techniques. Comparisons between the
behavior of the existing models and their neural network counterpars will provide some objective
measures of the performance of neural networks for personnel and manpower analysis. The
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extensive amount of data available in most areas of the personnel field offers many possibilities
for developing rich and complex models directly from the information available in observed
behaviors.
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